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Description 
Cryptography, the science of secret writing, is the biggest, baddest security tool in the application 
programmer's arsenal. Cryptography provides three services that are crucial in secure programming. 
These include a cryptographic cipher that protects the secrecy of your data; cryptographic certificates, 
which prove identity (authentication); and digital signatures, which ensure your data has not been 
damaged or tampered with.  

This book covers cryptographic programming in Java. Java 1.1 and Java 1.2 provide extensive support 
for cryptography with an elegant architecture, the Java Cryptography Architecture (JCA). Another set 
of classes, the Java Cryptography Extension (JCE), provides additional cryptographic functionality. 
This book covers the JCA and the JCE from top to bottom, describing the use of the cryptographic 
classes as well as their innards.  

The book is designed for moderately experienced Java programmers who want to learn how to build 
cryptography into their applications. No prior knowledge of cryptography is assumed. The book is 
peppered with useful examples, ranging from simple demonstrations in the first chapter to full-blown 
applications in later chapters.  

Topics include:  

• The Java Cryptography Architecture (JCA)  

• The Java Cryptography Extension (JCE)  

• Cryptographic providers  

• The Sun key management tools  

• Message digests, digital signatures, and certificates (X509v3)  

• Block and stream ciphers  

• Implementations of the ElGamal signature and cipher algorithms  

• A network talk application that encrypts all data sent over the network  

• An email application that encrypts its messages  

• Creating signed applets 

Covers JDK 1.2 and JCE 1.2. 
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Preface 

Who Are You? 

This book is written for moderately experienced Java developers who are interested in cryptography. 
It describes cryptographic development in Java. If you know nothing about cryptography, don't worry 
- there's a whole chapter (Chapter 2) that describes the concepts. The main thrust of this book is to 
detail the classes and techniques that you need to add cryptographic functionality to your Java 
application. 

This book stubbornly sticks to its subject, cryptographic development in Java. If you're curious about 
the mathematics or politics of cryptography, pick up a copy of Bruce Schneier's Applied Cryptography 
(Wiley). Although I will implement the ElGamal cipher and signature algorithms in Chapter 9, I'm 
demonstrating the Java programming, not the mathematics. And although I explain how the Java 
cryptography packages are divided by U. S. export law (Chapter 3), I won't try to explain the laws in 
detail or comment on them. A solid book on the mathematics of cryptography is the Handbook of 
Applied Cryptography by Alfred J. Menezes et al. (CRC Press). For a recent look at the politics of 
cryptography, see Privacy on the Line: The Politics of Wiretapping and Encryption, by Whitfield 
Diffie and Susan Landau (MIT Press). 

If you need to get up to speed with Java development, I suggest these O'Reilly books: 

• David Flanagan's Java in a Nutshell provides a speedy introduction to Java for the 
experienced developer. 

• Exploring Java, by Pat Niemeyer and Joshua Peck, has a gentler learning curve for the less 
experienced developer. 

For an overview of the entire Java Security API, try Scott Oaks' Java Security, also published by 
O'Reilly. 

About This Book 

This book is organized like a sandwich. The outer chapters (Chapter 1, Chapter 2, and Chapter 12) 
provide context for the rest of the book. Chapter 3 through Chapter 11 (the meat) are a methodical and 
pragmatic description of cryptographic programming in Java, including numerous useful examples. 

Chapter 1, describes cryptography's role in secure systems development and introduces some short 
examples of cryptographic programming. 

Chapter 2, introduces the fundamental concepts of cryptography: ciphers, message digests, signatures, 
and random numbers. 

Chapter 3, presents a bird's-eye view of Java cryptographic software packages and introduces the 
Provider Architecture that underlies the Java Security API. 

Chapter 4, describes cryptographic random numbers in Java. 

Chapter 5, describes the key management classes that are included with the JDK. 

Chapter 6, shows how to use message digests, signatures, and certificates for authentication. 

Chapter 7, covers encryption: symmetric and asymmetric ciphers, cipher modes, and hybrid systems. 

Chapter 8, describes how to create signed applets. 

Chapter 9, describes how to write a security provider. It includes classes that implement the ElGamal 
cipher and signature algorithms. 

Chapter 10, presents a completely functional application, a cryptographically enabled network talk 
application. 
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Chapter 11, includes another complete application, a cryptographically enabled email client. 

Chapter 12, talks about noncryptographic security issues you should know about. 

Appendix A, discusses the BigInteger class, which is useful for implementing the mathematics of 
cryptographic algorithms. 

Appendix B, presents classes for base64 conversion. 

Appendix C, describes the jar archiving tool, which is used to bundle up Java applets and 
applications. 

Appendix D, includes a description of the JDK 1.1 javakey tool, which is used to manage a database of 
keys and certificates. 

Appendix E, contains a quick reference listing of the cryptographic classes covered in this book. 

What's Not in This Book 

This book does not discuss: 

• ClassLoaders 

• The bytecode verifier 

• SecurityManagers 

• Access control and permissions 

For a thorough treatment of these subjects, see O'Reilly's Java Security. 

About the Examples 

Versions 

The examples in this book run with the Java Developer's Kit (JDK) 1.2 and the Java Cryptography 
Extension (JCE) 1.2. The examples in the book were tested with JDK 1.2beta3 and JCE 1.2ea2. Some 
of the topics covered are applicable to JDK 1.1, especially the Identity-based key management 
discussed in Chapter 5and the MessageDigest and Signature classes in Chapter 6. However, 
anything involving encryption requires the JCE. The only supported version of the JCE is 1.2, and it 
only runs with JDK 1.2. (Although the JCE had a 1.1 release, it never progressed beyond the early 
access stage. It is not supported by Sun and not available from their web site any longer.) 

The signed applets in Chapter 8 work with HotJava 1.1, Netscape Navigator 4.0, and Internet Explorer 
4.0. 

File Naming 

This book assumes you are comfortable programming in Java and familiar with the concepts of 
packages and CLASSPATH. The source code for examples in this book should be saved in files based on 
the class name. For example, consider the following code: 

import java.applet.*; 
import java.awt.*; 
 
public class PrivilegedRenegade extends Applet { 
 
  ... 
 
} 

This file describes the PrivilegedRenegade class; therefore, you should save it in a file named 
PrivilegedRenegade.java. 
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Other classes belong to particular packages. For example, here is the beginning of one of the classes 
from Chapter 9: 

package oreilly.jonathan.security; 
 
import java.math.BigInteger; 
import java.security.*; 
 
public class ElGamalKeyPairGenerator 
    extends KeyPairGenerator { 
 
  ... 
 
} 

This should be saved in oreilly/jonathan/security/ElGamalKeyPairGenerator.java. 

Throughout the book, I define classes in the oreilly.jonathan.* package hierarchy. Some of them 
are used in other examples in the book. For these examples to work correctly, you'll need to make sure 
that the directory containing the oreilly directory is in your CLASSPATH. On my computer, for example, 
the oreilly directory lives in c:\ Jonathan\ classes. So my CLASSPATH contains c:\ Jonathan\ classes ; 
this makes the classes in the oreilly.jonathan.* hierarchy accessible to all Java applications. 

CLASSPATH 

Several examples in this book consist of classes spread across multiple files. In these cases, I don't 
explicitly import files that are part of the same example. For these files to compile, then, you need to 
have the current directory as part of your classpath. My classpath, for example, includes the current 
directory and the Java Cryptography Extension (JCE - see Chapter 3). On my Windows 95 system, I 
set the CLASSPATH in autoexec.bat as follows: 

set classpath=. 
set classpath=%classpath%;c:\jdk1.2beta3\jce12-ea2-dom\jce12-ea2-dom.jar 

Variable Naming 

The examples in this book are presented in my own coding style, which is an amalgam of conventions 
from a grab bag of platforms. 

I follow standard Java coding practices with respect to capitalization. All member variables of a class 
are prefixed with a small m, like so: 

protected int mPlainBlockSize; 

This makes it easy to distinguish between member variables and local variables. Static members are 
prefixed with a small s, like this: 

protected static SecureRandom sRandom = null; 

And final static member variables are prefixed with a small k (it stands for constant, believe it or not): 

protected static final String kBanner = "SafeTalk v1.0"; 

Array types are always written with the square brackets immediately following the array type. This 
keeps all the type information for a variable in one place: 

byte[] ciphertext; 

Downloading 

Most of the examples from this book can be downloaded from : 

ftp://ftp.oreilly.com/pub/examples/java/crypto/ 

Some of the examples, however, cannot legally be posted online. The U. S. government considers some 
forms of encryption software to be weapons, and the export of such software or its source code is 
tightly controlled. Anything we put on our web server can be downloaded from any location in the 
world. Thus, we are unable to provide the source code for some of the examples online. The book 
itself, however, is protected under the first amendment to the U. S. Constitution and may be freely 
exported. 

ftp://ftp.oreilly.com/pub/examples/java/crypto/
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Font Conventions 

A constant width font is used for: 

• Class names and method names. 

• Source code. 

• Example command-line sessions. The input you type is shown in boldface. 

Italic is used for: 

• Paths and filenames. 

• New terms where they are defined. 

• Internet addresses, such as domain names and URLs. 

Boldface is used for the names of interface buttons. 

Request for Comments 

If you find typos, inaccuracies, or bugs, please let us know. 

O'Reilly & Associates, Inc.  
101 Morris Street  
Sebastopol, CA 95472  
(800)998-9938 (in the United States or Canada)  
(707)829-0515 (international or local)  
(707)829-0104 (fax)  
bookquestions@oreilly.com  
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Chapter 1. Introduction 
This book is about cryptographic programming in Java™. This chapter presents the "big picture" of 
secure systems and quickly moves to the specifics of cryptography. I begin by describing secure 
systems design. Next I explain what cryptography is and describe its role in secure systems 
development. This chapter concludes with a pair of "teaser" examples: two short Java applications 
that will whet your appetite for the rest of the book. 

1.1 Secure Systems 

Computer applications enable people to do work. Applications are parts of a larger system (a business, 
usually) that also involves people, fax machines, white boards, credit cards, paper forms, and anything 
else that makes the whole system run. Secure systems make it hard for people to do things they are 
not supposed to do. For example, a bank is designed as a secure system. You shouldn't be able to 
withdraw money from someone else's account, whether you try at the teller window, or by using the 
bank machine, or by telephone. Of course, you could bribe the teller or disassemble the bank machine, 
but these things are usually not worth the cost. 

Secure systems are designed so that the cost of breaking any component of the system outweighs the 
rewards. Cost is usually measured in money, time, and risk, both legal and personal. The benefits of 
breaking systems are generally control, money, or information that can be sold for money. The 
security of the system should be proportional to the resources it protects; it should be a lot harder to 
break into a brokerage than a magazine subscription list, for example. 

The term "secure systems" is a little misleading; it implies that systems are either secure or insecure. 
In truth, there is no absolute security. Every system can be broken, given enough time and money. Let 
me say that again, every system can be broken. There are more secure and less secure systems, but no 
totally secure systems. When people talk about secure systems, they mean systems where security is a 
concern or was considered as part of the design. 

The job of the application programmer is to make an application that costs as much to break as any 
other component in the system. Building a secure application usually involves a three-way balancing 
act. The cost of having your application broken must be balanced against both the application's cost 
and the application's ease of use. You could spend a million dollars to build a very secure application, 
but it wouldn't make sense if the cost of a break-in would be measured only in thousands. You might 
build a moderately secure application instead, but it won't do you any good if it's too hard to use. 

The security of any application is determined by the security of the platform it runs on, as well as the 
security features designed into the application itself. I'll talk about platform security later in this 
chapter. Chapter 2, explains the concepts of security that can be programmed into an application. The 
most important tool applications use for security is cryptography, a branch of mathematics that deals 
with secret writing. 

This is serious stuff! Unfortunately, in application development, security is often relegated to the 
we'll-add-that-later-if-we-have-time list.[1] Security should be a part of your design from the 
beginning, not a neglected afterthought. The information that your application harbors is valuable. 
The application's users value this information; this implies that the users' competitors and any 
number of third parties might also find the information valuable. If the cost of stealing that 
information is small compared with its value, you are in trouble. 

[1] For a sobering assessment of secure system design, see Bruce Schneier's paper, "Why Cryptography Is Harder 
Than It Looks..." at http://www.counterpane.com/whycrypto.html. Mr. Schneier is the author of the legendary 
Applied Cryptography (Wiley), which is a must if you want to understand the mathematics behind 
cryptography. 

The meteoric growth of Internet applications is closely shadowed by the meteoric growth of computer 
crime opportunities. The Internet is not a safe place. Only applications that are strong and well 
guarded have a place there. Even on a closed company network, applications should be secure, to limit 
damage or loss from authorized users. Even on a single, nonnetworked computer, applications should 
be secure, to limit damage or loss from unauthorized users. 

http://www.counterpane.com/whycrypto.html
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The field of computer security is fascinating and volatile. In it you can find fire-and-brimstone security 
professionals, preaching about the dangers of badly applied cryptography, paranoid propeller-heads 
who believe the government reads everybody's email, and a healthy dose of wide-eyed programmers 
who can't understand why Sun made their lives so difficult with that damned sandbox thing. 
Overshadowing the whole field is the National Security Agency (NSA), an intimidating behemoth of 
unimaginable and unfathomed cryptanalytic power. The U.S. government, furthermore, categorizes 
some cryptographic software as weaponry and limits its export. All in all, it's a combination of a tent 
revival and Star Wars. The stories behind cryptographic algorithms are much more interesting than 
the math itself. 

This book describes the cryptographic classes in the Java Security API. The Security API is fresh and 
exciting, but it will not make Java programs secure at the drop of a hat. Security is a tricky, evolving 
mind game. The purpose of this book is to describe how you can use cryptography to make your Java 
applications more secure. 

1.2 Cryptography 

Cryptography is the science of secret writing. It's a branch of mathematics, part of cryptology . 
Cryptology has one other child, cryptanalysis , which is the science of breaking (analyzing) 
cryptography. 

The main security concerns of applications are addressed by cryptography. First, applications need 
assurance that users are who they say they are. Proving identity is called authentication . In the 
physical world, a driver's license is a kind of authentication. When you use a computer, you usually 
use a name and password to authenticate yourself. Cryptography provides stronger methods of 
authentication, called signatures and certificates. I'll talk about these in Chapter 6. 

Computer applications need to protect their data from unauthorized access. You don't want people 
snooping on your data (you want confidentiality), and you don't want someone changing data without 
your knowledge (you want to be assured of your data's integrity). Data stored on a disk, for example, 
may be vulnerable to being viewed or stolen. Data transmitted across a network is subject to all sorts 
of nefarious attacks. Again, cryptography provides solutions; I'll discuss them in detail in Chapter 6 
and Chapter 7. 

So what can you do with cryptography? Plenty. Here are just a few examples: 

Secure network communications  

Cryptography can protect your data from thieves and impostors. Most web browsers now 
support SSL , a cryptographic protocol that encrypts information before it is transmitted over 
the Internet. SSL allows you to buy things, using your credit card number, without worrying 
too much that the number will be stolen. 

Secure hard disk  

You can encrypt the files on your hard disk so that even if your enemies gain physical access to 
your computer, they won't be able to access its data. 

Secure email  

Email is notoriously easy to steal and easy to forge. Cryptography can make it hard to forge 
email and hard to read other people's messages. 

Although cryptography is heavily mathematical, there isn't much math in this book. One of the really 
nice things about the Java Security API is that, like any good software library, it hides a lot of 
complexity. The Security API exposes concepts, like Signature and Cipher, and quietly deals with the 
underlying details. You can use cryptography effectively in a Java application without knowing too 
much about what's going on underneath the hood. Of course, this implies you need to trust Sun to 
write the Security API correctly. This book should tell you what you need to know to use cryptographic 
concepts properly in your Java applications. 
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1.3 Platform Security 

One of the things that makes Java so interesting is the security features that are built in to the 
platform itself. Java was designed to enable small programs, applets, to be downloaded and run 
without danger. Applets are nifty, but without the right precautions they would be very dangerous. 
Java's bytecode verifier, ClassLoader, and SecurityManager work in tandem to safely execute 
downloaded classes. 

The Java Development Kit (JDK™) 1.2 (in beta as this book goes to press) includes some interesting 
security enhancements, including the concepts of protection domains, permissions, and policies. I 
won't rehash Java's platform security features here. For a good summary, see Exploring Java by Pat 
Niemeyer and Joshua Peck (O'Reilly). For a more thorough treatment, including the new JDK 1.2 
features, see Java Security by Scott Oaks (O'Reilly). The security that the Java platform provides 
comes "for free" to application developers. Application-level security, however, needs to be developed 
into the application. This book is about programming application-level security through the use of 
cryptography. 

Application-level security can compensate for an insecure platform, in some cases. Internet Protocol 
(IP) networks , for example, are insecure. It's impossible to prevent packet snooping, Domain Name 
System (DNS) spoofing, or foul-ups like misdelivered email. A carefully crafted application, however, 
can compensate for an insecure platform like the IP network. If the body of your email is encrypted, 
for example, it won't do anyone any good to view a message.[2] If you encrypt all data that you send 
over the network, then a packet sniffer won't be able to pick up much useful information. 

[2] If you're especially careful, you might be interested in concealing the mere existence of the email. In this case, 
you'd need to take more elaborate precautions than simply encrypting the email. 

1.4 Astute Inequalities 

At the 1997 JavaOne conference, the Java Security Architect, Li Gong, gave a presentation on Java 
security. One of his slides is particularly useful for understanding Java security and cryptography. It 
contains a list of five inequalities, to which I've added explanations.[3] 

[3] To see the whole presentation, see http://java.sun.com/javaone/sessions/slides/TT03/index.html. 

Security != cryptography  

Adding cryptography to an application will not make it secure. Security is determined by the 
overall design and implementation of a system; cryptography is a tool for building secure 
systems. 

Correct security model != bug-free implementation  

Even if you have a great design (model), bugs in your implementation can be exploited by 
attackers. With a correct design, however, you can focus on debugging the implementation. If 
your design is not secure, you have to go all the way back to the drawing board before you 
even think about debugging. 

Testing != formal verification  

Although testing is a great idea, it won't prove to anyone that a system is secure. In the real 
world, "formal verification" means extensive reviews of your system's design and 
implementation by knowledgeable security people. A cheap way to do this is to post your 
application's source code to the Internet and invite people to poke holes in it. 

Component security != overall system security  

System security is a chain, and any link can be broken. Even if the components of a system are 
secure, they may interact in insecure ways. 

Java security != applet containment  

A lot of the buzz about Java security has centered around the applet "sandbox" and the 
security of applets running in browsers. (Go look at comp.lang.java.security, for example, 
and you'll find it's mostly filled with applet sandbox questions.) In truth, this is only a small 
part of the Java security picture. Most of this book is about the rest of the picture. 

http://java.sun.com/javaone/sessions/slides/TT03/index.html
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1.5 Hello, zoT1wy1njA0=! 

Let's jump right into Java cryptography with some examples. The first example can be run by anyone 
who has the Java Development Kit (JDK) 1.1 or later installed. The second example uses classes from 
the Java Cryptography Extension (JCE). To run it, you will need to download and install the JCE, 
which is available in the United States and Canada only at http://java.sun.com/products/jdk/1.2/jce/. 
Chapter 3, discusses these pieces of software and how they fit together. 

Don't worry if you don't understand everything in these programs. They are demonstrations of what 
you can do with cryptography in Java, and everything in them will be explained in more detail 
elsewhere in the book. 

1.5.1 Masher 

Our first example demonstrates how a message digest works. A message digest takes an arbitrary 
amount of input data and creates a short, digested version of the data, sometimes called a digital 
fingerprint, secure hash, or cryptographic hash. Chapter 2 and Chapter 6 contain more detail about 
message digests. This program creates a message digest from a file: 

import java.io.*; 
import java.security.*; 
 
import sun.misc.*; 
 
public class Masher { 
  public static void main(String[] args) throws Exception { 
    // Check arguments. 
    if (args.length != 1) { 
      System.out.println("Usage: Masher filename"); 
      return; 
    } 
 
    // Obtain a message digest object. 
    MessageDigest md = MessageDigest.getInstance("MD5"); 
 
    // Calculate the digest for the given file. 
    FileInputStream in = new FileInputStream(args[0]); 
    byte[] buffer = new byte[8192]; 
    int length; 
    while ((length = in.read(buffer)) != -1) 
      md.update(buffer, 0, length); 
    byte[] raw = md.digest(); 
 
    // Print out the digest in base64. 
    BASE64Encoder encoder = new BASE64Encoder(); 
    String base64 = encoder.encode(raw); 
    System.out.println(base64); 
  } 
} 

To use this program, just compile it and give it a file to digest. Here, I use the source code, 
Masher.java, as the file: 

C:\ java Masher Masher.java 
nfEOH/5M+yDLaxaJ+XpJ5Q== 

Now try changing one character of your input file, and calculate the digest again. It looks completely 
different! Try to create a different file that produces the same message digest. Although it's not 
impossible, you probably have a better chance of winning the lottery. Likewise, given a message digest, 
it's very hard to figure out what input produced it. Just as a fingerprint identifies a human, a message 
digest identifies data but reveals little about it. Unlike fingerprints, message digests are not unique. 

A message digest is sometimes called a cryptographic hash. It's an example of a one-way function , 
which means that although you can calculate a message digest, given some data, you can't figure out 
what data produced a given message digest. Let's say that your friend, Josephine, wants to send you a 
file. She's afraid that your mutual enemy, Edith, will modify the file before it gets to you. If Josephine 
sends the original file and the message digest, you can check the validity of the file by calculating your 
own message digest and comparing it to the one Josephine sent you. If Edith changes the file at all, 
your calculated message digest will be different and you'll know there's something awry.  

http://java.sun.com/products/jdk/1.2/jce/
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Of course, there's a way around this: Edith changes the file, calculates a new message digest for the 
changed file, and sends the whole thing to you. You have no way of knowing whether Edith has 
changed the file or not. Digital signatures extend message digests to solve this problem; I'll get to them 
in Chapter 6. 

So how does this program work? It operates in four distinct steps, indicated by the source comments: 

1. Check command-line arguments. Masher expects one argument, a filename. 

2. Obtain the message digest object. We use a factory method, a special static method that 
returns an instance of MessageDigest. This factory method accepts the name of an algorithm. 
In this case, we use an algorithm called MD5. 

 MessageDigest md = MessageDigest.getInstance("MD5"); 

This type of factory method is used throughout the Security API. 

3. Calculate the message digest. Here we open the file and read it in 8-kilobyte chunks. Each 
chunk is passed to the MessageDigest object's update() method. Finally, the message digest 
value is calculated with a call to digest(). 

4. Make the result readable. The digest() method returns an array of bytes. To convert this to a 
screen-printable form, we use the sun.misc.BASE64Encoder class. This class converts an 
array of bytes to a String, which we print. 

 

Base64 
Base64 is a system for representing an array of bytes as ASCII characters. This is useful, for 
example, when you want to send raw byte data through a medium, like email, that may not 
support anything but 7-bit ASCII. 

The base64 system is fully described in RFC 1521, in section 5.2. You can download this 
document from ftp://ds.internic.net/rfc/rfc1521.txt. It's another number system, just like 
octal or hexadecimal. Whereas octal uses three bits per digit and hexadecimal uses four, 
base64 uses six bits per digit. 

Fortunately, there are two undocumented Java classes that take care of all the details. 
sun.misc.BASE64Encoder takes an array of bytes and generates a String containing the 
base64 digits. A corresponding class, sun.misc .BASE64Decoder, takes a String and 
produces the original byte array. 

These classes are undocumented, so Sun has no obligation to support them or keep them 
around in future releases of Java. If you don't have the sun.misc classes available, 
Appendix B, has listings for base64 conversion classes that can be used for the examples in 
this chapter. Once you have entered and compiled the base64 classes, replace the import 
sun.misc.* statement with import oreilly.jonathan.util.* and the examples should 
work without further change. 

Base64 is used in the examples in this chapter simply as a utility, to make byte arrays into 
easily displayable ASCII strings. The example in Chapter 11, however, puts base64 to a 
much more practical use. That chapter includes a cryptographically enabled email 
application. Encrypted data is converted to base64 to be sent through the Internet, since 
many mailers only support ASCII. 

 

ftp://ds.internic.net/rfc/rfc1521.txt
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1.5.2 SecretWriting 

The next example uses classes that are found only in the Java Cryptography Extension (JCE). The JCE 
contains cryptographic software whose export is limited by the U.S. government. If you live outside 
the United States or Canada, it is not legal to download this software. Within the United States and 
Canada, you can get the JCE from http://java.sun.com/products/jdk/1.2/jce/. 

The SecretWriting program encrypts and decrypts text. Here is a sample session: 

C:\ java SecretWriting -e Hello, world! 
Lc4WKHP/uCls8mFcyTw1pQ== 
 
C:\ java SecretWriting -d Lc4WKHP/uCls8mFcyTw1pQ== 
Hello, world! 

The -e option encrypts data, and the -d option decrypts it. A cipher is used to do this work. The cipher 
uses a key. Different keys will produce different results. SecretWriting stores its key in a file called 
SecretKey.ser. The first time you run the program, SecretWriting generates a key and stores it in the 
file. Subsequently, the key is loaded from the file. If you remove the file, SecretWriting will create a 
new key. Note that you must use the same key to encrypt and decrypt data. This is a property of a 
symmetric cipher. We'll talk more about different flavors of ciphers in Chapter 7. 

"Hello, world!" can be encrypted to many different values, depending on the key that you use. Here 
are a few sample ciphertexts: 

Lc4WKHP/uCls8mFcyTw1pQ== 
xyOoLnWOH0eqRwUu3rQHJw== 
hevNJLNowIzrocxplKI7dQ== 

The source code for this example is longer than the last one, but it's also a more capable program: 

import java.io.*; 
import java.security.*; 
 
import javax.crypto.*; 
 
import sun.misc.*; 
 
public class SecretWriting { 
  public static void main(String[] args) throws Exception { 
    // Check arguments. 
    if (args.length < 2) { 
      System.out.println("Usage: SecretWriting -e|-d text"); 
      return; 
    } 
 
    // Get or create key. 
    Key key; 
    try { 
      ObjectInputStream in = new ObjectInputStream( 
          new FileInputStream("SecretKey.ser")); 
      key = (Key)in.readObject(); 
      in.close(); 
    } 
    catch (FileNotFoundException fnfe) { 
      KeyGenerator generator = KeyGenerator.getInstance("DES"); 
      generator.init(new SecureRandom()); 
      key = generator.generateKey(); 
      ObjectOutputStream out = new ObjectOutputStream( 
          new FileOutputStream("SecretKey.ser")); 
      out.writeObject(key); 
      out.close(); 
    } 
 
    // Get a cipher object. 
    Cipher cipher = Cipher.getInstance("DES/ECB/PKCS5Padding"); 
 
    // Encrypt or decrypt the input string. 
    if (args[0].indexOf("e") != -1) { 
      cipher.init(Cipher.ENCRYPT_MODE, key); 
      String amalgam = args[1]; 
      for (int i = 2; i < args.length; i++) 
        amalgam += " " + args[i]; 
      byte[] stringBytes = amalgam.getBytes("UTF8"); 
      byte[] raw = cipher.doFinal(stringBytes); 
      BASE64Encoder encoder = new BASE64Encoder(); 

http://java.sun.com/products/jdk/1.2/jce/
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      String base64 = encoder.encode(raw); 
      System.out.println(base64); 
    } 
    else if (args[0].indexOf("d") != -1) { 
      cipher.init(Cipher.DECRYPT_MODE, key); 
      BASE64Decoder decoder = new BASE64Decoder(); 
      byte[] raw = decoder.decodeBuffer(args[1]); 
      byte[] stringBytes = cipher.doFinal(raw); 
      String result = new String(stringBytes, "UTF8"); 
      System.out.println(result); 
    } 
  } 
} 

SecretWriting has to generate a key the first time you use it. This can take a few seconds, so be 
prepared to wait. 

In the meantime, let's look at the steps in this program: 

1. Check command-line arguments. We expect an option, either -e or -d, and a string. 

2. Next we need a key to use the cipher. We first attempt to deserialize the key from a file named 
SecretKey.ser. If this fails, we need to create a new key. A KeyGenerator object creates keys. 
We obtain a KeyGenerator by using a factory method, in just the same way that we obtained a 
MessageDigest in the Masher example. In this case, we ask for a key for the DES (Data 
Encryption Standard) cipher algorithm: 

 KeyGenerator generator = KeyGenerator.getInstance("DES"); 

The key generator must be initialized with a random number to produce a random new key. It 
takes a few seconds to initialize the SecureRandom, so be patient. 

 generator.init(new SecureRandom()); 

This done, we are set to generate a key. We serialize the key to the SecretKey.ser file so that 
we can use the same key the next time we run the program. 

3. Having obtained our key, we obtain a cipher in much the same way: 

 Cipher cipher = Cipher.getInstance("DES/ECB/PKCS5Padding"); 

This specifies the DES algorithm and some other parameters the Cipher needs. We'll talk 
about these in detail in Chapter 7. 

4. Finally, we encrypt or decrypt the input data. The Cipher is created in an uninitialized state; it 
must be initialized, with a key, to either encryption mode or decryption mode. This is 
accomplished by calling init(). When encrypting, we take all of the command-line 
arguments after the -e option and concatenate them into one string, amalgam. 

Then we get a byte array from this string and encrypt it in the call to Cipher's doFinal() 
method: 

 byte[] stringBytes = amalgam.getBytes("UTF8"); 
 byte[] raw = cipher.doFinal(stringBytes); 

Finally, as in the Masher example, we convert the raw encrypted bytes to base64 and display 
them. 

Decrypting is the same process in reverse. We convert the command-line argument from 
base64 to an array of bytes. We then use our Cipher object to decrypt this: 

 byte[] stringBytes = cipher.doFinal(raw); 

We create a new String from the resulting byte array and display it. Note that we specify an 
encoding for converting between a String and a byte array. If we just used the default 
encoding (by calling getBytes() with no argument), then the ciphertext produced by this 
program might not be portable from one machine to another. We use UTF8 as a standard 
encoding because it can express all Unicode characters. For more information on UTF8, see 
http://www.stonehand.com/unicode/standard/wg2n1036.html. You don't really have to 
understand how UTF8 works; just think of it as a standard way to convert from a string to a 
byte array and back. 

http://www.stonehand.com/unicode/standard/wg2n1036.html
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This is only a demonstration program. Note that its key management is not secure. SecretWriting 
silently writes the secret key to a disk file. A secret key must be kept secret - writing it to a file without 
notifying the user is not wise. In a multiuser system, other users might be able to copy the key file, 
enabling them to decode your secret messages. A better approach would be to prompt the user for a 
safe place to put the key, either in a protected directory, in some sort of protected database, on a 
floppy disk, or on a smart card, perhaps. Another approach is to encrypt the key itself before writing it 
to disk. A good way to do this is using password-based encryption, which is covered in Chapter 7. 

Although SecretWriting doesn't do a whole lot, you can see how it could be expanded to implement a 
cryptographically enabled email application. I'll develop such an application in Chapter 11. 
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Chapter 2. Concepts 
At the application programming level, there are many options for making a program secure. 
Cryptography is the biggest, baddest tool in the application programmer's arsenal. But it is important 
to realize that a cryptographically enabled program is not necessarily a secure one. Without a carefully 
planned and constantly scrutinized security strategy, cryptography won't do you much good. 

Correctly used, cryptography provides these standard security features: 

• Confidentiality assures you that data cannot be viewed by unauthorized people. 

• Integrity assures you that data has not been changed without your knowledge. 

• Authentication assures you that people you deal with are not imposters. 

Random numbers are used in many cryptographic algorithms. I'll talk a little bit about computer-
generated random numbers at the end of the chapter. I'll wrap up by discussing the cryptographic 
algorithms used in this book. 

2.1 Confidentiality 

Most of us don't want other people to read our mail, which is why we use letters instead of postcards. 
Almost all information on the Internet is transmitted on the equivalent of postcards. Even if nobody is 
deliberately spying on you, electronic mail is frequently misdelivered. If you mistype a recipient's 
address, your mail might get sent to a system administrator somewhere. It's surprisingly easy for 
information you thought was confidential to be available to hundreds of thousands of people on the 
Internet. 

Even data on your computer's hard disk is surprisingly available to your coworkers, the people who 
clean your office, and anyone else who might have physical access to your computer. If you are 
considering leaving your current job, you probably wouldn't feel comfortable leaving a copy of your 
résumé on your office computer; someone might find it. 

To protect your information from prying or curious eyes, you need to take extra precautions. A 
common way to protect information is to encrypt it at the sending end and decrypt it at the receiving 
end. Encryption is the process of taking data, called plaintext , and mathematically transforming it 
into an unreadable mess, called ciphertext . Decryption takes the ciphertext and transforms it back 
into plaintext. The mathematical algorithm that performs the transformations is called a cipher . 
Figure 2.1 shows how this works. 

Figure 2.1. Operation of a cipher 

 
To protect data on a hard disk, you would encrypt it before writing it on the disk. You could decrypt 
the ciphertext whenever you wanted to look at the information (or to print copies of your résumé). 

A trivial cipher is rot13 . The algorithm for rot13 simply rotates each character of a text message 
through 13 positions. One application of rot13 transforms plaintext to ciphertext, and a second 
application of rot13 transforms the ciphertext to plaintext. Rot13 was originally developed to render 
potentially offensive jokes unreadable in Internet newsgroups. Anyone who inadvertently stumbled 
upon one of these jokes would just see a jumble of rot13 ciphertext. Those who really wanted to see the 
jokes had to decrypt them first. 
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Rot13 is not very secure; anyone with the rot13 algorithm can decrypt rot13 ciphertext. Let's say that 
Maid Marian wants to send a secret message to Robin Hood, and she encrypts it with rot13. If the 
Sheriff of Nottingham can intercept the message, he can decrypt it, as shown in Figure 2.2. 

Figure 2.2. Intercepting a rot13 message 

 
The Sheriff doesn't even have to know that he's intercepting rot13 ciphertext. If he's an amateur 
cryptanalyst, he should be able to decrypt the ciphertext without knowing the algorithm used. The 
rot13 algorithm is a variation on the Caeser cipher, which, as its name implies, was hot stuff about 
2000 years ago. Cryptograms are another variation on this type of cipher, where each letter in a 
message is replaced with another. Modern ciphers use much more complicated transformations than 
rot13. 

Useful ciphers use keys to encrypt and decrypt data. A key is a secret value, like a password or a bank 
card code. It is not human-readable, the way a password is, and it is longer than a bank card code. You 
can think of it as a sequence of bytes. It can be stored in memory or on a disk drive. If you encrypt the 
same plaintext using different keys, you will get different ciphertexts. Similarly, ciphertext can only be 
decrypted to the original plaintext using the proper key. 

2.1.1 Symmetric Ciphers 

A symmetric cipher uses the same key at the sending and receiving end, as shown in Figure 2.3. 
Symmetric ciphers are also called private key or secret key ciphers. 

Figure 2.3. Operation of a symmetric cipher 

 
Using a symmetric cipher can be awkward. You have to keep the key a secret, and you have to trust 
your recipient to keep the key a secret also. If someone else obtains the key, you and your recipient 
have to agree on a new key in a secure manner. For example, let's say Maid Marian and Robin Hood 
are using a symmetric cipher to exchange messages. If the Sheriff of Nottingham somehow obtains 
Robin Hood's copy of the private key, then Marian needs to generate a new private key. Then she has 
to figure out how to get a copy of the private key to Robin Hood without letting anyone else find out 
about it. 

You could run into the same problem with the server and client parts of an application. If you want to 
keep people from snooping on the data that passes between the client and server, you could use a 
symmetric cipher. But both the client and the server need to know the private key. If the key is 
discovered, your entire system is suddenly insecure. To avoid this problem, you could program each 
client with a different private key, but this would quickly become a distribution headache. 
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2.1.2 Asymmetric Ciphers 

The shortcomings of symmetric ciphers are addressed by asymmetric ciphers, also called public key 
ciphers. These ciphers actually involve a public key, which can be freely distributed, and a private key, 
which is secret. These keys are always generated in matching pairs. Public keys really are public; you 
can publish them in a newspaper or write them in the sky. No one can violate your privacy or 
impersonate you without your private key. The mechanism for distributing public keys, however, is a 
big challenge. I'll talk more about this in the section on certificates, later in this chapter. 

Data encrypted using the public key can be decrypted using the private key. No other key will decrypt 
the data, and the private key will decrypt only data that was encrypted using the matching public key. 
In some cases, the reverse of the process also works; data encrypted with the private key can be 
decrypted with the public key. If Marian wants to send a message to Robin Hood, she can encrypt it 
using Robin Hood's public key. Only the matching private key, which should be known only to Robin 
Hood, can be used to decrypt the message. Figure 2.4 shows how this works. 

Figure 2.4. Operation of an asymmetric cipher 

 

The Sheriff can intercept this message, but it doesn't do him any good because the message can be 
decrypted only with Robin Hood's private key. And as long as Robin Hood keeps his private key secret, 
he can give his public key to anyone who wants it, even the Sheriff. With the public key, the Sheriff can 
send Robin messages (if he wants), but can't decode anything that others send. In particular, he can't 
use the public key to compute Robin's private key, at least not without spending the entire Gross 
National Product of mediaeval England on state-of-the-art computers. 

Asymmetric ciphers are much slower than symmetric ciphers, so they are not usually used to encrypt 
long messages. I'll talk more about this later. 

 

So What Is a Key, Anyway? 
It's easiest to think of keys in a conceptual way. First, visualize a cipher as a machine. To 
run the machine, you need to stick a key in it. You can stuff plaintext in one side and get 
ciphertext out the other side. You can run the cipher in reverse to convert ciphertext to 
plaintext. 

In practice, the cipher is a mathematical formula. A key is just a special number, or a few 
special numbers, that are used in the formula. A public key for an ElGamal cipher, for 
example, consists of three numbers, called p, g, and y. When you use an ElGamal cipher to 
encrypt data, the p, g, and y values are used mathematically to transform the plaintext into 
ciphertext. (For more on ElGamal, see Chapter 9). 

There are many ways to store keys. You could just write the key's values out to a file, or you 
might add a header with additional information about the key. In the SecretWriting 
example in Chapter 1, we serialize a key to a file. If your filesystem isn't protected from 
intrusion, you'll have to be careful about writing private keys to files. One solution is to 
encrypt the keys themselves, perhaps with a passphrase, before writing them out. (See 
Chapter 7, for more information on this.) Another solution for storing private keys is to put 
them on removable media, like floppy disks or smart cards. 
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2.1.3 Hybrid Systems 

Hybrid systems combine symmetric and asymmetric ciphers. The beginning of a conversation 
involves some negotiation, carried out using an asymmetric cipher, where the participants agree on a 
private key, or session key . The session key is used with a symmetric cipher to encrypt the remainder 
of the conversation. The session key's life is over when the two participants finish their conversation. 
If they have a new conversation, they'll generate a new session key, which makes the cryptanalyst's job 
harder. 

The terms used to describe cryptographic systems can be confusing. An asymmetric cipher uses a 
public and a private key. A symmetric cipher uses a private key too, but sometimes it's called a secret 
key or a session key. Finally, symmetric ciphers are sometimes called secret key ciphers. 

2.1.4 Distributing Keys 

How exactly would Marian get Robin Hood's public key? This could happen in several different ways. 
Robin Hood could post the key on a network server for Marian to pick up, email it to Marian, put it on 
a disk and hand the disk to Marian, or write the value of each byte on a piece of paper and send each 
piece to Marian by carrier pigeon. Because public keys are meant to be distributed, Robin Hood 
doesn't care if the Sheriff of Nottingham intercepts this communication. He does care, however, if the 
Sheriff gives Marian a bogus public key instead of Robin Hood's real public key. If the Sheriff is 
successful in this skullduggery, he can impersonate Robin Hood, causing him and Marian serious 
trouble. There is a solution to this problem, called certificates; I'll talk about them later in this 
chapter, in the section on authentication. 

2.1.5 Key Agreement Protocols 

A key agreement protocol or key exchange protocol is a system in which two parties can agree on a 
secret value. Even if someone is listening to everything the two parties say, they can still agree on a 
secret value without revealing it. This is useful in situations where the two parties would like to agree 
on a key that can be used to encrypt a subsequent conversation. 

2.2 Integrity 

When you download a file over the Internet, you'd like to be sure that the file you get is the one you 
wanted; you'd like to be assured of the file's integrity. Many people make the following assumptions, 
consciously or unconsciously, when they download a file from a server: 

• The file is not a malicious program. 

• The file has not been replaced, unbeknownst to the server's owners, by a malicious program. 

• There is not another computer between you and the server, sending you a different file than 
the one you want or modifying the file that gets sent to you. This is the "man-in-the-middle" 
attack. 

This is a hefty batch of assumptions, not stuff that gives you a warm fuzzy feeling. Although these 
assumptions are geared toward executable files, any type of download is at risk. You want to be sure 
that you get what you thought you were getting. 

For example, Maid Marian runs an FTP server. One of the files she puts on it, for public consumption, 
is her schedule for the next couple of weeks. Journalists and paparazzi check this schedule regularly, 
as does Robin Hood. Robin Hood is always suspicious, so he'd like some assurance that the schedule 
file he downloads is not a counterfeit. 

A message digest can be used to verify data integrity. A message digest is a special number calculated 
from a set of input data.[1] Figure 2.5 shows how this works. 

[1] If you are familiar with hash functions, it will help you to know that a message digest is a lot like a hash value, 
except longer. Message digests are sometimes called secure hash functions or cryptographic hash functions. 
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Figure 2.5. A message digest 

 
Let's try to use the message digest in our previous example to ensure data integrity. It involves a few 
steps: 

1. Marian calculates the message digest of her schedule file and places the digest value on the 
server. 

2. Robin Hood downloads both the file and the message digest. 

3. Robin Hood calculates the message digest of the file and compares it to the downloaded 
message digest value. 

If the calculated message digest matches the downloaded message digest, then eveything is copacetic, 
right? Wrong. If the Sheriff of Nottingham is sneaky enough (he is), he could break into Marian's FTP 
server and post a different schedule with a matching message digest file. Another possible attack is the 
man-in-the-middle attack, where the Sheriff intercepts files traveling from Marian's server to Robin 
Hood and replaces them with his own files. 

In this case, the use of the message digest has gained us little, except to make it a little harder for the 
Sheriff to forge a file. The message digest becomes useful when it's paired with other cryptographic 
techniques. 

A Message Authentication Code (MAC), for example, is basically a message digest with an associated 
key. It produces a short value based on both its input data and the key. In theory, only someone with 
the same key can produce the same MAC from the same input data. 

Another approach to authentication comes from the combination of a message digest and an 
asymmetric cipher. If Marian encrypts the message digest with her private key, Robin Hood can 
download the encrypted message digest, decrypt it using Marian's public key, and compare the 
message digest to one that he computes from the downloaded file. If they match, then he can be sure 
that the file is correct. 

The encrypted message digest is called a signature ; Marian has signed the file. Figure 2.6 shows this 
process.[2] 

[2] Not all signature algorithms work this way. In some algorithms, the steps of digesting and encrypting are 
collapsed into a single signing step. ElGamal, presented in Chapter 9, is an example of a signature algorithm 
with a single signing step. Here, the steps of digesting and encrypting are shown separately, for clarity. 

Figure 2.6. Generating a signature 
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Figure 2.7 shows how Robin Hood can verify the signature. First, Robin Hood decrypts the signature, 
using Marian's public key. This leaves him with a message digest value. Then he calculates the 
message digest of the schedule file himself. If the two message digest values match, Marian's signature 
is verified. 

Figure 2.7. Verifying a signature 

 

2.3 Authentication 

At some fundamental level, you want to be sure that the people you deal with are really who they say 
they are. The process of proving identity is called authentication. 

When you call someone on the telephone, you identify yourself by saying your name. The sound of 
your voice authenticates you to the person on the other end of the line. When you use an automated 
bank machine, your bank card identifies you and your secret code authenticates you. Someone else 
using your bank card would presumably not know your code and thus could not pretend to be you. 

Most computer systems use a user ID and password combination for identity and authentication. You 
identify yourself using a user ID and authenticate your identity with a password. 

An asymmetric cipher can be used for authentication. Suppose Marian encrypts her schedule file using 
her private key. When Robin Hood downloads Marian's schedule file, he decrypts it using her public 
key. He can be sure that the file is from Marian because only Marian's private key could have 
encrypted the file in the first place. 

Asymmetric ciphers are computationally expensive, a nice computer science synonym for slow. 
Unfortunately, it's not practical to use an asymmetric cipher for entire conversations. Typically, an 
asymmetric cipher is used to authenticate the participants of a conversation; the conversation itself is 
encrypted with a symmetric cipher, using a special one-time key called a session key. Now the 
challenge is exchanging the session key without having anyone else find out about it. The Secure 
Sockets Layer (SSL) does exactly this; I'll look at it in detail in Chapter 7. 

Let's consider another scenario. Will Scarlet also runs an FTP server, and Robin Hood wants to 
download a file from that server. Will has signed the file. Unfortunately, Robin Hood does not have 
Will's public key on hand. He could download the public key from Will's server, but how would he 
know that the public key hadn't been tampered with? 

2.3.1 Certificates 

If Marian already knows Will's public key, she can help Robin Hood, using something called a 
certificate. A certificate is a statement, issued by one person, that the public key of another person has 
a certain value. Essentially, a certificate is a signed public key. Marian creates the certificate by placing 
some information about her, some information about Will, and Will's public key value into a file. She 
then signs the file with her own private key, as shown in Figure 2.8. Robin Hood (or anyone else) can 
download this certificate and verify it using Marian's public key. Robin Hood trusts Marian, so he also 
now has a trustworthy copy of Will's public key, which he can use to verify files signed by Will. 
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Figure 2.8. Creating a certificate: Marian is the signer, and Will Scarlet is the subject 

 
As Figure 2.8 shows, the information about Marian and Will Scarlet, as well as Will Scarlet's public 
key, is placed directly in the certificate. This same information is signed by Marian. The resulting 
signature is placed in the certificate with the rest of the data. Anyone who downloads the certificate 
can verify its contents using the signer's (Marian's) public key. The verification process is as follows: 

1. Calculate a message digest for the certificate contents (except the signature). 

2. Decrypt the signature using the signer's (Marian's) public key. The result is a message digest. 

3. Compare the decrypted message digest to the calculated message digest. If they match, the 
certificate is valid and you now know the value of Will's public key. 

2.3.2 Certificate Chains 

To verify a certificate, you need a public key. To verify a public key, you need a certificate. Essentially, 
one certificate can be verified by another, which is verified by another, and so forth. This is called 
certificate chaining. The chain can't be infinite, so where does it start? The certificate chain starts with 
a certificate whose issuer and subject are the same. Usually such a certificate is issued by a Certificate 
Authority (CA), an ostensibly dependable institution like VeriSign or the U. S. Postal Service. 

As far as Robin Hood is concerned, Marian is completely trustworthy. She serves as a CA in certifying 
Will Scarlet's public key to Robin Hood. 

How do certificate chains work? Let's say that Robin Hood want to verify the authenticity of a file that 
has been signed by Little John. Little John supplies Robin with a certificate chain consisting of two 
certificates: 

• The first certificate contains Little John's public key. It was issued by Friar Tuck. 

• The second certificate contains Friar Tuck's public key and was issued by Maid Marian. 

Robin Hood already has a trustworthy, self-signed certificate from Marian. He uses Marian's public 
key to verify the signature on Friar Tuck's certificate. Then he uses Friar Tuck's public key to verify 
Little John's certificate. Now, finally, he can trust Little John's public key and use it to verify the 
integrity of the downloaded file. 

Using certificates to prove authenticity, then, depends on a chain of certificates that ultimately 
terminates on a self-signed certificate issued by a CA. Self-signed certificates, though, aren't secure at 
all. Anyone can generate a self-signed certificate, claiming to be the Post Office or the Emperor of 
Tibet. Why would you ever trust a self-signed certificate? You can trust a self-signed certificate if 
you're able to verify it. One convenient way to verify certificates is to calculate a message digest of the 
entire certificate, commonly known as a certificate fingerprint .  
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To verify a fingerprint, call the people who issued the certificate and have them read off the numbers 
of the fingerprint. Another option is for the CA to widely publish their self-signed certificate's 
fingerprint, perhaps in newspapers and magazines as well as online. If you obtain a fingerprint from 
several sources, and they all match the fingerprint on the self-signed certificate you possess, then the 
certificate is likely to be trustworthy. 

Currently, most self-signed certificates are embedded into web browsers. When you download and run 
a browser, it can recognize certificates issued by a dozen or so popular CAs, using internal self-signed 
certificates from these CAs. How do you know that somebody tricky hasn't modified the self-signed 
certificates as you downloaded the browser? You don't. If you're worried about this attack, you should 
verify the self-signed certificate fingerprints in the browser before you accept any certificates issued by 
these CAs. Alternately, you should download the browser in a secure manner, perhaps using SSL (see 
Chapter 7). 

 

Certificate Authorities: At Odds with the 
Internet? 

Some people believe that hierarchical certificates are not a good way to authenticate users. 
The existence of many certificates chains, all leading back to a small group of CAs, is seen as 
a security weakness. It does focus a lot of attention on the CA's private key. Anyone 
possessing this key can issue all sorts of bogus certificates and have them trusted by a large 
group of users. According to the Meta Certificate Group (MCG, http://mcg.org.br/), the 
centralized architecture of traditional certificates won't work in the distributed 
environment of the Internet. They are hard at work on a better solution, called Meta 
Certificates, but the hierarchical certificate structure remains a de facto standard. 

 

2.4 Random Numbers 

Random numbers are crucial in cryptography. They are used to create cryptographic keys and, in 
some cases, to encrypt or sign data. A random number is one whose value cannot be predicted. A 
random number generator (RNG) is a device that produces random numbers. 

It's fairly easy for humans to generate random numbers. You can sit down with a pair of dice or a deck 
of cards, and generate as many random numbers as you want. It's much harder to convince a 
computer to generate random numbers. Computers are designed to be methodical and deterministic. 
Some computers can use specialized hardware to generate random numbers, by measuring an 
unstable electronic circuit or radioactive decay or some other random process. Most of us, however, 
don't have this kind of hardware. Furthermore, such solutions tend to be very platform-specific, which 
is not good for Java programmers. 

As with horseshoes and hand grenades, "close" has to be good enough. Computers, therefore, use a 
pseudo-random number generator (PRNG) as a source of "random" data. A PRNG uses an algorithm 
to generate an endless sequence of ostensibly random numbers. Usually a message digest function is 
used iteratively to make it difficult to determine the past or future output of the PRNG. The PRNG is 
initialized, or seeded , using a small set of truly random data. 

That's the way it's supposed to work. Programmers who are not familiar with cryptography usually 
seed the PRNG with the current value of the system clock. Anyone with access to the same PRNG can 
use the same seed, which allows them to make good guesses of keys and other random data that has 
been generated. Let's say, for example, that Marian generates a key pair using a PRNG seeded with the 
system clock. The Sheriff of Nottingham, if he knows approximately when Marian generated the key 
pair, can easily guess the seed value for the PRNG. He can then generate the same key pair and cause 
Marian all sorts of trouble. Even if he doesn't know exactly when Marian generated the key pair, just 
knowing an approximate time makes his life a lot easier. He can write a program to try a whole range 
of seed values until he manages to generate the same key pair that Marian generated. 

http://mcg.org.br/
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Good seeds come from really random processes, like radioactive decay or an unstable electronic 
circuit. Some computers use the input from a disconnected audio input as random data. Most good 
random data generating depends heavily on specific hardware. These types of solutions are hard to 
implement in platform-independent Java . 

2.5 Algorithms 

In this section, I'll briefly discuss the impact of key size on security. Then I'll introduce the algorithms 
that will be used in this book. 

2.5.1 Size Does Matter 

Key size affect7 the security of signatures and ciphers. In general, the longer the key, the harder it will 
be for an attacker to decrypt your ciphertext or forge a signature. Basically, longer keys have more 
possible values. If your attacker is trying every possible key to find the right one (a brute-force attack), 
a longer key gives the attacker more work. Keep in mind, however, that key size is only part of the 
story. A long key won't do you much good if the algorithm itself is weak. 

Asymmetric ciphers and signatures have a variable key size. It's up to your application or users to 
choose an appropriate key length. Although longer keys are more secure, they are also slower. Picking 
the right key size is a trade-off between finding a comfortable level of security and having your 
application run too slowly. 

Symmetric ciphers can either have a fixed or variable key length; it depends on the algorithm. 

2.5.2 Names and Numbers 

Table 2.1 summarizes the algorithms that I'll use in this book. We'll implement the ElGamal signature 
and cipher algorithms in Chapter 9. All the other algorithms have been implemented as part of 
software supplied by Sun™. 

Table 2.1, Algorithms Used in This Book 

Name Type Reference 

MD5 Message digest RFC 1321 ftp://ds.internic.net/rfc/rfc1321.txt 

SHA-1 Message digest NIST FIPS 180-1 http://www.nist.gov/itl/div897/pubs/fip180-1.htm

HmacMD5 MAC RFC 2104 ftp://ds.internic.net/rfc/rfc2104.txt 

HmacSHA1 MAC RFC 2104 ftp://ds.internic.net/rfc/rfc2104.txt 

DSA Signature NIST FIPS 186 http://www.nist.gov/itl/div897/pubs/fip186.htm 

ElGamal Signature Applied Cryptography, by Bruce Schneier (Wiley) 

DES Symmetric cipher NIST FIPS 46-2 http://www.nist.gov/itl/div897/pubs/fip46-2.htm 

DESede Symmetric cipher ANSI X9.17 or ISO 8732 http://www.ansi.org/ 

PBE With MD5 And 
DES Symmetric cipher 

PKCS#5  
http://www.rsa.com/rsalabs/pubs/PKCS/html/pkcs-5.html 

ElGamal Asymmetric cipher Applied Cryptography, by Bruce Schneier (Wiley) 

DH Key exchange PKCS#3 http://www.rsa.com/rsalabs/pubs/PKCS/ 

ftp://ds.internic.net/rfc/rfc1321.txt
http://www.nist.gov/itl/div897/pubs/fip180-1.htm
ftp://ds.internic.net/rfc/rfc2104.txt
ftp://ds.internic.net/rfc/rfc2104.txt
http://www.nist.gov/itl/div897/pubs/fip186.htm
http://www.nist.gov/itl/div897/pubs/fip46-2.htm
http://www.ansi.org/
http://www.rsa.com/rsalabs/pubs/PKCS/html/pkcs-5.html
http://www.rsa.com/rsalabs/pubs/PKCS/
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Choosing an algorithm is tricky business. You need to choose something that's secure enough for your 
application, while at the same time taking into account licensing issues, patent restrictions, and 
countries' import and export laws. Except for DSA, all the algorithms in Table 2.1 are free of licensing 
and patent restrictions.[3] With the exception of the cipher and key exchange algorithms, they can also 
be freely exported from the United States. 

[3] There is some controversy surrounding DSA, and it's not at all clear what the outcome will be. See Applied 
Cryptography , by Bruce Schneier, for more details. The consensus is that DSA is not patented. Sun, for example, 
supplies DSA without a license. 

2.5.2.1 MD5 

The MD5 message digest algorithm was developed by Ronald Rivest (the R in RSA Data Security, Inc.) 
in 1991. It's an updated version of MD4, an earlier algorithm. It produces a 128-bit message digest 
value. MD5 has recently been found to have some weaknesses in its collision resistance, which 
normally prevents an attacker from finding two messages with the same digest. For new applications, 
use SHA-1 (or something else) instead. 

2.5.2.2 SHA-1 

SHA-1 stands for Secure Hash Algorithm. It was developed by the NIST (National Institute of 
Standards and Technology) in conjunction with the NSA. Like MD5, SHA-1 is based on MD4. The 
changes made in SHA-1, however, are considerably different from the changes made in MD5. Also, 
SHA-1 produces a message digest value that is 160 bits long, which increases its resistance to attack. 
Note that this algorithm is often called SHA. There was a SHA-0, which is now obsolete. SHA and 
SHA-1 are now used to mean the same thing. 

2.5.2.3 HmacMD5 and HmacSHA1 

HmacMD5 and HmacSHA1 are two MAC algorithms based on the familiar message digest algorithms 
MD5 and SHA-1. The key used with these algorithms should be at least as long as the output of the 
message digest: use a 16-byte key for HmacMD5 and a 20-byte key for HmacSHA1. 

2.5.2.4 DSA 

DSA stands for Digital Signature Algorithm. It was developed by the NSA and released as a standard 
by the NIST. It is actually a combination of DSA and SHA-1. You can use any key size from 512 to 1024 
bits, in 64-bit increments. The signature size depends on the key size. 

2.5.2.5 ElGamal signatures 

The ElGamal signature algorithm can use any key size. In Chapter 9, I'll show you how to implement 
the ElGamal signature algorithm. ElGamal became patent-free as I wrote this book. As with DSA, the 
size of the signature depends on the key size. 

2.5.2.6 DES 

DES stands for Data Encryption Standard. It's a symmetric cipher, first published in 1975 and based 
largely on research performed at IBM. The National Security Agency (NSA) also had a hand in the 
algorithm, although its involvement and motives are still a subject of debate. At any rate, DES has 
withstood more than 20 years of intense cryptanalytic scrutiny. Its weakest part is its 56-bit key size 
(stored in 8 bytes), which makes it vulnerable to key search attacks. The NSA is rumored to have 
machines that will break DES ciphertext in a matter of minutes, but, of course, nobody knows for sure 
except the NSA, and they're not talking. 
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2.5.2.7 DESede 

DESede, also called triple DES, is a variant of the DES cipher algorithm. In fact, there are several 
variations on DESede itself. In the version I'll be using, blocks of plaintext are transformed into 
ciphertext using three DES keys and three applications of a normal DES cipher: 

1. The plaintext is encrypted using the first key. 

2. The result of step 1 is decrypted using the second key. 

3. The result of step 2 is encrypted using the third key, producing ciphertext. 

It is this process of encryption, decryption, and encryption that gives DESede its name. Decryption is 
the reverse of encryption: 

1. Ciphertext is decrypted using the third key. 

2. The result of step 1 is encrypted with the second key. 

3. The result of step 2 is decrypted with the first key, producing plaintext. 

DESede ciphertext is much harder to cryptanalyze than DES ciphertext. Effectively, you have 
increased your key length to 168 bits because DESede uses three 56-bit DES keys. Note that if all three 
keys are equal, DESede is identical to DES. A variation of DESede uses two keys instead of three. If 
you're trying to exchange ciphertext with another cryptographic application, make sure you 
understand which DESede variety you're using. 

2.5.2.8 PBEWithMD5AndDES 

PBE stands for passphrase-based encryption . This is a technique whereby a passphrase is used as the 
basis for a cipher key. For some applications, PBE is an attractive technique because it's easier to 
manage a passphrase than a cryptographic key. In this particular variant of PBE, an MD5 message 
digest is used to digest the passphrase. The digest value is then used as a DES key. One approach to 
this is described in PKCS#5, a document published by RSA Data Security, Inc. 

2.5.2.9 ElGamal ciphers 

ElGamal is a strong asymmetric cipher algorithm that became free of patent restrictions in 1997. Like 
ElGamal signatures, ElGamal ciphers can use key pairs of any length. The ElGamal cipher has the 
interesting property that it produces ciphertext that is about twice as large as the plaintext. Again, 
you'll see how to implement ElGamal in Chapter 9. 

2.5.2.10 DH 

DH stands for Diffie-Hellman , a system by which two parties can agree on a secret session key. The 
protocol is designed so that an eavesdropper will not know the value of the secret key, even if he or she 
is able to hear the entire exchange between the two parties. Diffie-Hellman was first published in 1976 
and was the opening chapter in the story of public key cryptography. Like ElGamal, Diffie-Hellman's 
patent expired as I wrote this book. 
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Chapter 3. Architecture 
Java cryptography software comes in two pieces. One piece is the JDK itself, which includes 
cryptographic classes for authentication. The other piece, the Java Cryptography Extension (JCE), 
includes so-called "strong cryptography." In this chapter I'll talk about these two pieces of software 
and the architecture that houses them. In particular, I'll cover: 

• The separation of cryptographic concepts and implementations (algorithms) 

• The separation of the public methods of a concept class from its inner workings 

• The use of factory methods in the cryptography classes 

• The provider architecture 

3.1 Alphabet Soup 

The Java Security API is a set of packages that are used for writing secure programs in Java. In 
particular, the classes and interfaces in the following packages are part of the Security API: 

• java.security 

• java.security.cert 

• java.security.interfaces 

• java.security.spec 

• javax.crypto 

• javax.crypto.interfaces 

• javax.crypto.spec 

Here are the major pieces and their acronyms: 

JCA  

The overall design of the cryptography classes is governed by the Java Cryptography 
Architecture (JCA). The JCA specifies design patterns and an extensible architecture for 
defining cryptographic concepts and algorithms. The JCA is designed to separate 
cryptographic concepts from implementations. The concepts are encapsulated by classes in 
the java.security and javax .crypto packages. Implementations are supplied by 
cryptographic providers. (There's more on this later, in the section on the provider 
architecture.) The JDK 1.2 comes with a default provider, named SUN, that implements a few 
cryptographic algorithms. 

JCE  

The U. S. government considers certain types of cryptographic software to be weapons and 
limits their export. Sun, therefore, split its cryptography classes into two groups. The first 
group is included in the java.security.* packages that are part of JDK 1.2. These classes 
can be exported without restriction. The second group, the Java Cryptography Extension, is 
for U.S. and Canadian distribution only. The JCE is an extension of the JCA and includes 
another cryptographic provider, called SunJCE. 

The JCE is a standard extension library, which means that although it is not a part of the core 
JDK, it is a package that works with the JDK. The current version of the JCE, 1.2, follows the 
naming convention for standard extension libraries by defining all its classes in the 
javax.crypto.* namespace. 
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Access control  

A number of classes in java.security are concerned with access control, security policy, and 
permissions. These do not relate directly to cryptography; to find out more, read O'Reilly's 
Java Security. 

Other players  

At least two groups outside the United States have implemented the JCE, based on its 
specifications, and are distributing the result without being encumbered by U.S. export law. 
Like the JCE, these packages include extensions to the cryptographic concept classes as well 
as algorithm implementations. Unlike the JCE, these packages are not hampered by U.S. 
export controls. 

Additionally, some software companies are offering cryptographic providers that plug in to 
the JCA. 

Figure 3.1 shows the various groups of security software. As the picture shows, the JCA encompasses 
classes included in the JDK 1.2 core as well as extensions from the JCE. 

Figure 3.1. Java Security API software 

 
Table 3.1 summarizes Java security software and where you can find it, as of this writing. It includes 
three JCE reimplementations developed outside the United States. 

Table 3.1, Java Security Download Locations 

Package Location 

JCA http://java.sun.com/products/jdk/1.2/ 

JCE http://java.sun.com/products/jdk/1.2/jce/ 

Cryptix http://www.systemics.com/software/cryptix-java/ 

IAIK http://wwwjce.iaik.tu-graz.ac.at/ 

JCP http://www.jcp.co.uk/products/ 

 

http://java.sun.com/products/jdk/1.2/
http://java.sun.com/products/jdk/1.2/jce/
http://www.systemics.com/software/cryptix-java/
http://wwwjce.iaik.tu-graz.ac.at/
http://www.jcp.co.uk/products/
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3.2 Concept Classes 

The java.security and javax.crypto packages have classes and interfaces that represent the 
cryptographic concepts that were introduced in Chapter 2. Table 3.2 summarizes the cryptographic 
concepts represented in the classes included in JDK 1.2 and JCE 1.2. 

Table 3.2, Cryptographic Concept Classes 

Class or Interface Description 

java.security.cert.Certificate A cryptographic certificate 

javax.crypto.Cipher A cipher 

java.security.Key , java.security.PrivateKey , 
java.security.PublicKey , javax.crypto.SecretKey 

A key, used for signing or encryption 

javax.crypto.KeyAgreement A secret key exchange protocol 

java.security.KeyFactory Translates public and private keys from one 
format to another 

javax.crypto.KeyGenerator Creates keys for symmetric ciphers 

java.security.KeyPairGenerator Creates pairs of public and private keys for 
signing or encryption 

javax.crypto.Mac A Message Authentication Code (MAC) 

java.security.MessageDigest A cryptographic hash function 

javax.crypto.SecretKeyFactory Translates secret keys from one format to 
another 

java.security.SecureRandom A cryptographically strong random number 
engine 

java.security.Signature A digital signature 

 
3.3 API and SPI 

The methods in the cryptographic concept classes are divided into two groups. The first group of 
methods is the Application Programming Interface, or API. It consists of all public methods that you 
can use to work with an instance of a concept class. The second group of methods is the Service 
Provider Interface, or SPI. This is the set of methods that subclasses must implement. By convention, 
SPI method names all begin with engine. 

In JDK 1.1, the SPI and API methods were mixed together in the cryptographic concept classes . The 
java.security.Signature class, for example, contained API methods like initSign() and 
verify() as well as SPI methods like engineInitSign() and engineVerify(). To implement a 
signature algorithm, you would create a subclass of Signature and define all the SPI methods. 
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In JDK 1.2, API methods and SPI methods are split into separate classes. Signature, for example, 
now contains only API methods. A separate class, java .security.SignatureSpi, contains all the 
SPI methods. To implement a signature algorithm now, create a subclass of SignatureSpi and define 
the SPI methods. Whenever you implement a cryptographic algorithm, you'll need to follow a similar 
process. In Chapter 7, and Chapter 9, we'll create implementations for KeyPairGenerator, 
Signature, and other concept classes by implementing the SPI of those classes. 

3.4 Factory Methods 

The JCA makes extensive use of factory methods to supply instances of its classes. The basic model is 
to ask a concept class for an instance that implements a particular algorithm. For example, the 
following code produces a MessageDigest instance that uses the MD5 algorithm: 

MessageDigest md5; 
md5 = MessageDigest.getInstance("MD5"); 

Like all the factory methods in the JCA, this one will throw a NoSuchAlgorithmException if the 
requested algorithm is not available. 

The instance that is returned to you from a factory method is some descendant of the class you asked 
for. But it doesn't really matter; this is one of the perks of object-oriented programming. The 
preceding code might return a sun.security.provider.MD5, but you can do everything you need to 
do by treating it as a MessageDigest. 

The following concept classes have getInstance() methods: 

• javax.crypto.Cipher  

• javax.crypto.KeyAgreement  

• java.security.KeyFactory  

• javax.crypto.KeyGenerator  

• java.security.KeyPairGenerator  

• javax.crypto.Mac  

• java.security.MessageDigest  

• javax.crypto.SecretKeyFactory  

• java.security.Signature  

These classes also have an overloaded version of getInstance() that accepts an algorithm name and 
a provider name. I'll discuss this in detail a little later. 

Right now, I suggest you bask in the simplicity of this style of programming. Changing algorithms is 
just as simple as changing the argument to getInstance(). You don't have to know a thing about the 
algorithms themselves because you have to deal with only the concept class - the MessageDigest, or 
Signature, or whatever else. If you want, you can create an application that allows the user to choose 
cryptographic algorithms from whatever cryptographic providers are available . 



Java Cryptography 

 page 28

3.5 Standard Names 

Asking for algorithms by name implies that there is a standard name for each cryptographic 
algorithm. Table 3.3 shows the standard algorithm names that are supported by the SUN provider 
(supplied with JDK 1.2) and the SunJCE provider (part of the JCE). For more information on the 
algorithms themselves, refer back to Chapter 2. 

Table 3.3, Standard Algorithm Names 

Concept class Algorithms supported by Sun Algorithms supported by SunJCE 

Cipher  DES, DESede, PBEWithMD5AndDES 

KeyAgreement  DH 

KeyFactory DSA  

KeyGenerator  DES, DESede 

KeyPairGenerator DSA  

Mac  HmacMD5, HmacSHA1 

MessageDigest MD5, SHA-1  

SecretKeyFactory  DES, DESede, PBEWithMD5AndDES 

Signature DSA  

 
3.6 The Provider Architecture 

At the root of the JCA is the idea of security providers. A provider supplies algorithms for the 
cryptographic concept classes. In practice, a provider is a collection of algorithm classes headed up by 
a java.security.Provider object. This is confusing terminology; provider (small p) refers to the 
concept, while Provider refers to a specific class. 

When you use a factory method to request a specific algorithm, it is the provider architecture, behind 
the scenes, that supplies the algorithm. The java.security.Security class manages security 
providers. When a program calls one of the factory methods to obtain a useful cryptographic object, 
the factory method asks the Security class to provide the object. The Security class, in turn, 
examines its providers to find a class that matches the requested cryptographic concept and 
algorithm. 

The Security class keeps track of providers by keeping a list of their corresponding Provider objects. 
When it needs a particular algorithm, it asks each Provider, in turn, if it implements a particular 
algorithm. Each Provider knows about the other classes in the provider's repertoire and will return 
an appropriate instance if possible. The Provider is, in effect, the boss of the algorithm team. 

JDK 1.2 comes with a default provider, called SUN. JCE 1.2 comes with an additional provider, 
SunJCE . 
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What Are Factory Methods? 
You'll recall that classes can define both class methods and instance methods. The class 
methods are usually called static methods and are defined using the static keyword. The 
instance methods are just called methods. Static methods don't need an instance to run. 
main(), for example, is a famous static method. Regular instance methods are always run 
on a particular instance of a class and typically manipulate its data or call other instance 
methods. 

A factory method, then, is a special kind of static method that returns an instance of a class. 
In JDK 1.0.2, factory methods were used indirectly in the Socket class (see 
setSocketImplFactory()). In JDK 1.1 and later, factory methods are much more 
prevalent. They are sprinkled throughout the java.text package as well as the 
java.security package. By convention, factory methods are named getInstance(). 

A factory method is an example of a design pattern, a pattern of programming that turns 
up again and again in object-oriented programming. For a thorough and interesting 
treatment of design patterns, take a look at Design Patterns: Elements of Reusable Object-
Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides 
(Addison-Wesley, 1995). 

 

As a dialogue, a call to MessageDigest.getInstance("MD5") looks like this: 

• Your program to MessageDigest: "Please get me an instance that implements the MD5 
algorithm." 

• MessageDigest to Security: "Please give me a message digest object that implements MD5. I 
don't care which provider supplies it." 

• Security to installed Providers: "Do any of you have an MD5 message digest class?" 

• SUN provider to Security: "Yes, the class is sun.security.provider.MD5." 

• Security to MessageDigest: "Yes, I found the class; here is an instance." 

• MessageDigest to your program: "Here you go!" 

It works the same way for the factory methods of other cryptographic constructs, like Signature or 
KeyGenerator. Even though there's a lot going on under the hood, it's very easy to obtain an object 
that implements a particular cryptographic algorithm. 

The installed providers are ordered by preference. If you had more than one installed provider that 
supported MD5 message digests, the provider listed first would be used. If you want an algorithm 
from a specific provider, you can use an overloaded version of getInstance(). The following code 
requests a KeyPairGenerator for the ElGamal algorithm, as implemented by the Jonathan provider. 
(Construction of the Jonathan provider is explained in Chapter 9.) 

KeyPairGenerator kpg = KeyPairGenerator("ElGamal", "Jonathan"); 

Providers can be configured in two ways. You can edit a properties file, which is called static provider 
configuration, or you can manage providers at runtime, which is dynamic provider configuration. 

To configure providers statically, you'll need to edit the java.security file, which is found in the 
lib/security directory underneath your main JDK installation directory. Inside this file, each installed 
provider is represented by a line with the following format: 

security.provider.n=providerclassname 
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The provider's class name should be fully specified; n is a number that determines the preference 
order of the providers. The first (default) provider is numbered 1. If you have not installed any 
additional providers, then your java.security file will have a single provider entry, like this: 

security.provider.1=sun.security.provider.Sun 

Adding a provider at runtime is simple once you've done all the provider programming. Just call 
Security.addProvider() or Security.insertProviderAt() with an instance of your provider 
class. When the Security class is first initialized, it reads the providers specified in the java.security 
file and installs them. Thereafter, programs are free to add and remove providers as they see fit. 

The Security class has a suite of methods for managing Providers at runtime: 

public static int addProvider(Provider provider)  

This method adds the given provider at the end of the provider preference list and returns the 
position of the provider (zero-based). You cannot add a provider class type more than once; if 
you try, this method returns -1. 

public static Provider getProvider(String name)  

This method returns the named provider or null if it is not found. 

public static Provider[] getProviders()  

This method returns an array of all the currently installed cryptography providers. 

public static int insertProviderAt(Provider provider, int position)  

This method adds the given provider at the given one-based position in the provider 
preference list. If you try to add a provider that is already installed, this method returns -1. 
Otherwise, it returns the one-based position of the provider. Inserting a provider at position 1 
puts it at the top of the list. 

public static void removeProvider(String name)  

This method removes the named provider.  

In general, you don't ever need to worry about providers or the provider architecture. Using the 
factory methods, you simply ask for an algorithm from a cryptographic class, and it either succeeds or 
fails. In some cases, however, you may want to use a certain provider. Additional factory methods are 
defined for this purpose. There are actually two overloaded getInstance() methods, one of which 
allows you to specify a provider name. For example, MessageDigest includes the following methods: 

public static MessageDigest getInstance(String algorithm) 
public static MessageDigest getInstance(String algorithm, String provider) 

The other cryptographic concept classes follow this pattern. 

 

Installing the JCE 
Currently, the JCE ships as a Java Archive (JAR) file. Once you've downloaded it, you 
should add this JAR to your CLASSPATH. To use the JCE algorithms, you'll have to install 
SunJCE as a provider, as described in this chapter. For example, I decided to add the 
SunJCE provider to my system statically. Therefore, I added a line for the SunJCE provider 
to my java.security file. The section on providers looks like this with the SunJCE provider 
installed: 

security.provider.1=sun.security.provider.Sun 
security.provider.2=com.sun.crypto.provider.SunJCE 
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3.7 Key Management 

To exchange data securely, you'll need to keep track of your own private and public keys as well as the 
public keys of all the people with whom you wish to converse securely. What you need is something 
like an address book that correlates individuals to their keys and certificates. The JCA contains 
support for exactly this, based around the Identity and KeyStore classes. For more information 
about this, take a look at Chapter 5. 

3.8 Summary 

The JCA is more a state of mind than a concrete set of classes. Most importantly, it separates 
cryptographic concepts from their implementations. The concepts are represented by the classes in 
the java.security and javax.crypto packages, while implementations are supplied by 
cryptographic providers. Using cryptography in a Java program is wonderfully simple. Because the 
API exposes concepts, rather than implementation details, it's easy to change the algorithms or 
providers that your program uses. Under the hood, there's a more complicated picture, but you won't 
have to worry about this unless you want to do something tricky, like develop your own provider. 
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Chapter 4. Random Numbers 
Random numbers are important for cryptography. As we discussed in Chapter 2, computers are not 
very good at producing truly random data. Instead, they rely on a pseudo-random number generator 
(PRNG). A cryptographically strong PRNG, seeded with truly random values, is a PRNG that does a 
good job of spewing out unpredictable data. But if the PRNG is not cryptographically strong, or if the 
seed data is not random, the security of your application can be compromised. 

In this chapter, I'll talk about a cryptographically strong PRNG that was introduced in JDK 1.1, 
java.security.SecureRandom. The rest of the chapter discusses how to produce random seed data 
from keyboard events. 

4.1 SecureRandom 

The JDK includes a class, java.util.Random, that implements a PRNG. Although it's fine for light-
duty use, it has the following shortcomings: 

• It uses an algorithm that produces a predictable sequence of numbers. 

• If you don't give Random a seed value, it uses the value of the system clock. This is a 
predictable seed. Let's say that you create a random number in order to create a cryptographic 
key. If an attacker knows when you created the random number, even approximately, he or 
she can guess at likely values of the random number seed. With a relatively small amount of 
guessing, the attacker can guess which random number seed you've used. From this, the 
attacker can generate the same supposedly random cryptographic key that you just generated. 
Now the attacker can impersonate you or read your secret messages. 

A stronger PRNG, java.security.SecureRandom, was introduced in JDK 1.1. This class is based 
around a message digest. SecureRandom uses the SHA-1 (Secure Hash Algorithm) message digest 
algorithm, which produces a 20-byte digest. Here's how it works: 

• The SecureRandom is created using a seed. The seed value is digested, and the resulting value 
is stored as part of the SecureRandom's internal state. An internal counter is initialized to zero. 

• Every time SecureRandom needs to create more pseudo-random numbers, the message digest 
is updated with the internal state and the counter, which is incremented. This data is digested 
and returned as the new pseudo-random data. 

Because of the irreversible nature of the message digest, it's very hard to predict the past and future 
values of the PRNG even if you know its present output. 

In practice, you don't have to worry about the details. Just create a SecureRandom instance and call its 
nextBytes() method to get pseudo-random data. In the example that follows, a SecureRandom is 
used to generate 100 bytes of pseudo-random data: 

SecureRandom sr = new SecureRandom(); 
byte[] pseudoRandom = new byte[100]; 
sr.nextBytes(pseudoRandom); 

SecureRandom provides two constructors: 

public SecureRandom()  

This constructor creates a new SecureRandom and initializes it with automatically generated 
seed data. This process is called self-seeding and is discussed in the next section. 

public SecureRandom(byte[] seed)  

This constructor takes the given seed data and uses it to initialize a new SecureRandom 
instance. 
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If your application collects truly random data, it can be used to update a SecureRandom's seed using 
setSeed() . 

public synchronized void setSeed(byte[] seed)  

This method updates the internal state of the SecureRandom with a new set of random seed 
data. The new data does not replace the original seed, but supplements it. 

When you need pseudo-random data, call nextBytes() . 

public synchronized void nextBytes(byte[] bytes)  

This method fills the given byte array with pseudo-random data. 

4.2 Self-Seeding 

If you don't specify a seed value when you construct a SecureRandom, one will be generated for you. 
This is where it gets confusing. The SecureRandom class has a static member variable, also a 
SecureRandom, called the seed generator. It is used to generate seed values for new SecureRandom 
instances. Every time you create a SecureRandom using new SecureRandom(), the seed generator is 
used to seed your SecureRandom instance. 

So how does the seed generator get seeded? SecureRandom uses an algorithm based on the timing of 
threads on the system to generate some supposedly random data. It uses this data to seed the seed 
generator itself. 

Thus, real random seed generation occurs only once, the first time you construct a SecureRandom. It 
has two disadvantages: 

• It takes a few seconds (5-10 seconds on my Pentium 90). 

• The thread timing algorithm is not thoroughly tested. It may have weaknesses that 
cryptanalysts could exploit. 

As Sun says in the SecureRandom documentation, 

This empty constructor automatically seeds the generator. We attempt to provide 
sufficient seed bytes to completely randomize the internal state of the generator (20 
bytes). Note, however, that our seed generation algorithm has not been thoroughly 
studied or widely deployed. It relies on counting the number of times that the calling 
thread can yield while waiting for another thread to sleep for a specified interval. 

The first time this constructor is called in a given Virtual Machine, it may take several 
seconds of CPU time to seed the generator, depending on the underlying hardware. 
Successive calls run quickly because they rely on the same (internal) pseudo-random 
number generator for their seed bits. 

4.3 Keyboard Timing 

In this section, I'll develop an alternate method of seeding a SecureRandom. This method is based on 
measuring the timing of keyboard events, a method that has been used for years in PGP (Pretty Good 
Privacy, a popular cryptography application). The basic idea is to measure the time between successive 
keystrokes using a fast timer (a resolution of 1 millisecond or better is preferable). For each keystroke, 
one or two low-order bits of timing information will appear random. Take as many bits as you need to 
seed your PRNG. Even a very good, very consistent typist will probably not be able to type with 
millisecond precision, which means the seed bits are truly random. 

This method does require that the user type data for a few seconds, which is not particularly user 
friendly. In contrast, the self-seeding algorithm in SecureRandom has no impact on your user 
interface, except that it will hang up your application for a few seconds the first time it is run. The 
method presented here, however, is under your control. 
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4.3.1 Seeder 

The Seeder class listens to KeyEvents and builds up a seed value of a certain length. When the seed is 
completed, Seeder will fire off an ActionEvent. Seeder doesn't care where the keyboard events come 
from; it just implements the KeyListener interface. We'll make Seeder part of the 
oreilly.jonathan.util package, so that we can easily use it later. 

package oreilly.jonathan.util; 
 
import java.awt.AWTEventMulticaster; 
import java.awt.event.*; 
 
public class Seeder 
    implements KeyListener { 

Internally, Seeder stores the seed value in a byte array, called mSeed. An integer, mBitIndex, serves as 
the current bit index. The mDone member variable indicates whether the Seeder is done gathering 
seed bits. Seeder also keeps track of the last key character it received. It rejects repeating keys because 
the timing of repeated keys may be predictable, and this would mess up our supposed random seed 
value. Seeder uses an ActionListener member variable to keep track of who gets notified when seed 
generation is complete. And finally, a Counter member variable keeps track of the object that 
measures the time between keyboard events. You'll see the Counter class later. 

protected byte[] mSeed; 
  protected int mBitIndex; 
  protected boolean mDone; 
  protected char mLastKeyChar; 
  protected ActionListener mListenerChain; 
  protected Counter mCounter; 

Seeder has only one constructor, which accepts the number of bytes of seed that are to be generated. 
The constructor simply calls the reset() method, which initializes the Seeder. 

  public Seeder(int seedBytes) { reset(seedBytes); } 
   
  public void reset(int seedBytes) { 
    mSeed = new byte[seedBytes]; 
    mBitIndex = seedBytes * 8 - 1; 
    mDone = false; 
    mLastKeyChar = '\0'; 
    mListenerChain = null; 
    mCounter = new Counter(); 
  } 

The following methods provide useful information about the Seeder: 

  public byte[] getSeed() { return mSeed; } 
  public int getBitLength() { return mSeed.length * 8; } 

Internally, the mBitIndex member variable counts down to zero. The getCurrentBitIndex() 
method actually returns a value that counts up from zero to getBitLength() . 

  public int getCurrentBitIndex() { 
    return mSeed.length * 8 - 1 - mBitIndex; 
  } 

Objects that wish to be notified when the seed is generated will register and unregister using 
addActionListener() and removeActionListener() . These calls are handled using the static 
methods of AWTEventMulticaster . 

  public void addActionListener(ActionListener al) { 
    mListenerChain = AWTEventMulticaster.add(mListenerChain, al); 
  } 
   
  public void removeActionListener(ActionListener al) { 
    mListenerChain = AWTEventMulticaster.remove(mListenerChain, al); 
  } 
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As a KeyListener, Seeder is notified of key press and release events. A matched key press and release 
is transmitted as a "typed" key. Seeder filters out repeated keys and calls grabTimeBit() for the 
events we receive in keyTyped(). 

public void keyPressed(KeyEvent ke) {} 
  public void keyReleased(KeyEvent ke) {} 
  public void keyTyped(KeyEvent ke) { 
    char keyChar = ke.getKeyChar(); 
    if (keyChar != mLastKeyChar) 
      grabTimeBit(); 
    mLastKeyChar = keyChar; 
  } 

In grabTimeBit() , we first examine mDone. If we're finished gathering seed bits, we return 
immediately. Otherwise, grabTimeBit() pulls off a bit from the Counter and adds it to the seed 
value. 

protected void grabTimeBit() { 
    if (mDone) return; 
    int t = mCounter.getCount(); 
    int bit = t & 0x0001; 

If the bit is not zero, the seed value needs to be updated, as follows: 

if (bit != 0) { 
      int seedIndex = mBitIndex / 8; 
      int shiftIndex = mBitIndex % 8; 
      mSeed[seedIndex] |= (bit << shiftIndex); 
    } 

Regardless of the bit value, the index variable is decremented. 

mBitIndex--; 

If the bit index is less than zero, we're finished. We stop the Counter, first of all. Then we reset the bit 
index to zero, so the getCurrentBitIndex() method returns a valid value. Setting the mDone flag to 
true signifies that seed generation is complete. 

if (mBitIndex < 0) { 
      mCounter.stop(); 
      mBitIndex = 0; // Reset this so getCurrentBitIndex() works. 
      mDone = true; 

Finally, we notify any registered ActionListeners that the seed value is ready. This concludes both 
the grabTimeBit() method and the Seeder class. 

if (mListenerChain != null) { 
        mListenerChain.actionPerformed( 
            new ActionEvent(this, 0, "Your seed is ready.")); 
      } 
    } 
  } 
} 

There are three steps involved in using Seeder. First, create a Seeder for the desired number of seed 
bytes, as follows: 

Seeder s = new Seeder(20); 

Then hook up a source of KeyEvents to the Seeder. 

theComponent.addKeyListener(s); 

Finally, to be notified when the seed generation is through, register an object to listen for 
ActionEvents from the Seeder. 

s.addActionListener(this); 
 
 
 
 
 
 
 
 
 
 
 
 



Java Cryptography 

 page 36

What Is AWTEventMulticaster? 
You may be mystified by Seeder's use of AWTEventMulticaster . And why, if Seeder keeps 
track of multiple ActionListeners, is there only a single member variable to represent 
them? 

The mListenerChain member variable actually keeps track of a chain of ActionListeners. 
When a new listener is added, using addActionListener(), AWTEventMulticaster 
handles adding the new listener. It creates a new object that encapsulates all the previous 
ActionListeners and the new ActionListener. When an ActionEvent is sent to this 
object, it propagates the event to all its contained ActionListeners. Even though there is 
only a single ActionListener variable, mListenerChain, this variable references an object 
that may contain a whole chain of listeners. 

 

4.3.2 Counter 

The Counter class that Seeder uses is presented below. It creates a thread for itself and counts as fast 
as it can. 

  package oreilly.jonathan.util; 
 
public class Counter 
    implements Runnable { 
  protected boolean mTrucking; 
  protected int mCounter; 
   
  public Counter() { 
    mTrucking = true; 
    mCounter = 0; 
    Thread t = new Thread(this); 
    t.start(); 
  } 
   
  public void run() { 
    while (mTrucking){ 
      mCounter++; 
      try { Thread.sleep(1); } 
      catch (InterruptedException ie) {} 
  } 
}   
   
  public void stop() { mTrucking = false; } 
  public int getCount() { return mCounter; } 
 
} 

4.3.3 Pitfalls 

Two issues governed the design of Seeder: 

Timing is tricky  

Counter runs in its own thread, but without knowing how Java threads work in detail, we 
can't be sure that there might be some regularity in the values that Counter returns to 
Seeder. Originally I wrote this class to use the value of the system clock instead of a value 
from Counter. On my Windows 95 machine, however, the system clock (as returned by 
System.currentTimeMillis()) had a resolution of only 10 ms, which I felt was too coarse 
for comfort. I use Counter instead because it has a higher resolution than the system clock. 
Note, however, that this is really a variation on the thread-timing method that Sun uses as the 
default SecureRandom seed generation process. 
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Repeated keys are dangerous  

The timing of repeated keys is very regular. Seeder dodges this trap by explicitly filtering out 
repeated keys. But are there other traps like this lurking in the Seeder class? Could you 
produce even timing by quickly alternating two keys? Does the keyboard device itself have 
some coarse interval for generating key events, so that you might be able to type faster than 
the keyboard could process the events? 

How can you tell if Seeder's results are truly random? There are many statistical tests for 
randomness, but even data that passes these tests may not be random. For interesting discussions on 
the mathematics and philosophy of random numbers, try these resources: 

http://random.mat.sbg.ac.at/  

This site, hosted at the University of Salzburg, contains information on random number 
generators and tests for random numbers, as well as links to literature and other web sites on 
randomness. 

http://www.cs.berkeley.edu/~daw/netscape-randomness.html  

This site contains a no-nonsense list of links to papers, source code, and hardware 
specifications relating to random numbers. 

http://lavarand.sgi.com/  

For a lighter look at random numbers, try this cartoonish site. It describes how Lava Lites® 
can be used to generate random numbers. 

Without a review of Seeder's design by security professionals, and without statistical analysis of its 
output, you shouldn't trust Seeder too much. It does demonstrate the basic principle of gathering 
random bits from timed events, however. You could modify this class to gather timing information 
from other sources as well, like the mouse. If you use more sources of supposedly random events, 
you're more likely to get a truly unpredictable stream of data.  

4.4 SeederDialog 

Wouldn't it be nice if there were a modal dialog that used a Seeder to generate a seed value? And 
wouldn't it be nice if the dialog had a progress bar that showed how far along the generation was? I'll 
develop this nice dialog now. 

SeederDialog is designed to make it easy to integrate Seeder into your application. Create one, show 
it, and retrieve the seed value as follows: 

SeederDialog sd = new SeederDialog(this, 20); 
sd.show(); 
byte[] seed = sd.getSeed(); 

The dialog itself is shown in Figure 4.1. As the user types characters, the progress bar fills up. When 
the seed is fully generated, the dialog goes away. 

Figure 4.1. SeederDialog in action 

 

http://random.mat.sbg.ac.at/
http://www.cs.berkeley.edu/~daw/netscape-randomness.html
http://lavarand.sgi.com/
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SeederDialog is both an ActionListener and a KeyListener. It receives an ActionEvent from its 
Seeder when the seed is fully generated. It receives the same KeyEvents as the Seeder, which allows 
it to update the progress bar. 

package oreilly.jonathan.awt; 
 
import java.awt.*; 
import java.awt.event.*; 
 
import oreilly.jonathan.util.*; 
 
public class SeederDialog 
    extends Dialog 
    implements ActionListener, KeyListener { 

Internally, the dialog contains a Seeder object and a progress bar. (The progress bar is type 
oreilly.jonathan.awt.ProgressBar. I'll present the code at the end of this section.) 

  ProgressBar mProgressBar; 
  Seeder mSeeder; 

SeederDialog's constructor accepts a parent Frame and a number of seed bytes. It creates itself as a 
modal dialog (true in the call to super()) and uses the setupWindow() method to configure the 
dialog. 

  public SeederDialog(Frame parent, int seedBytes) { 
    super(parent, "Seeder Dialog", true); 
    setupWindow(seedBytes); 
  } 

The getSeed() method returns the seed value from the underlying Seeder object. 

public byte[] getSeed() { return mSeeder.getSeed(); } 

The dialog receives an ActionEvent from the Seeder when it is done. In this case, it simply shuts 
itself down. 

public void actionPerformed(ActionEvent ae) { dispose(); } 

SeederDialog receives the same KeyEvents that are sent to the Seeder. They are used to set the 
current level of the progress bar. 

  public void keyPressed(KeyEvent ke) {} 
  public void keyReleased(KeyEvent ke) {} 
  public void keyTyped(KeyEvent ke) { 
    mProgressBar.setLevel(mSeeder.getCurrentBitIndex()); 
  } 

Finally, the setupWindow() method configures the user interface of the dialog and wires up the event 
handling. 

  protected void setupWindow(int seedBytes) { 
    setFont(new Font("TimesRoman", Font.PLAIN, 12)); 
    setLayout(new GridLayout(4, 1)); 
    Label t1 = new Label("Please type some keys"); 
    Label t2 = new Label("to initialize the random"); 
    Label t3 = new Label("number generator."); 
    add(t1); 
    add(t2); 
    add(t3); 
    mProgressBar = new ProgressBar(); 
    Panel p = new Panel(); 
    p.add(mProgressBar); 
    add(p); 
     
    setSize(200, 200); 
    setLocation(100, 100); 
    pack(); 
   
    mSeeder = new Seeder(seedBytes); 
    mProgressBar.setMaximum(mSeeder.getBitLength()); 
    mSeeder.addActionListener(this); 
     
    t1.addKeyListener(mSeeder); 
    t1.addKeyListener(this); 
    t1.requestFocus(); 
  } 
} 



Java Cryptography 

 page 39

As promised, here is the code for the progress bar that SeederDialog uses. 

package oreilly.jonathan.awt; 
 
import java.awt.*; 
 
public class ProgressBar 
    extends Canvas { 
  int mLevel; 
  int mMaximum; 
  Color mFrameColor; 
 
  public ProgressBar() { this(100); } 
   
  public ProgressBar(int max) { 
    setForeground(Color.blue); 
    mFrameColor = Color.black; 
    setMaximum(max); 
    setLevel(0); 
  } 
 
  public void setMaximum(int max) { 
    mMaximum = max; 
    repaint(); 
  } 
  
  public void setLevel(int level) { 
    mLevel = (level > mMaximum) ? mMaximum : level; 
    repaint(); 
  } 
 
  public void update(Graphics g) { paint(g); } 
  
  public void paint(Graphics g) { 
    Dimension d = getSize(); 
    double ratio = (double)((double)mLevel / (double)mMaximum); 
    int x = (int)((double)d.width * ratio); 
 
    g.setColor(mFrameColor); 
    g.drawRect(0, 0, d.width - 1, d.height - 1); 
 
 
    g.setColor(getForeground()); 
 
    g.fillRect(1, 1, x, d.height - 2); 
 
 
 
    g.setColor(getBackground()); 
 
    g.fillRect(x + 1, 1, d.width - 2 - x, d.height - 2); 
 
  } 
 
  
 
  public Dimension getMinimumSize() { return new Dimension(10, 1); } 
 
  public Dimension getPreferredSize() { return new Dimension(100, 10); } 
 
} 
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Chapter 5. Key Management 
Key management is the biggest challenge for developers who wish to use public key cryptography in 
their applications. Even Sun wasn't quite sure how to tackle this problem. Between JDK 1.1 and JDK 
1.2, they shifted their strategy so there are now two key management paradigms you can use. 

In this chapter, I'll cover the key management concepts represented by classes and interfaces in the 
JDK. These concepts include the following: 

• Keys 

• Key generators and translators 

• Key agreement protocols 

• Identity-based key management, including identities, signers, and scopes 

• Keystore-based key management, including the KeyStore class and the keytool utility 

One of our examples is a general-purpose identity-based key management class, KeyManager, that I'll 
use in the examples in Chapter 10, and Chapter 11. 

5.1 Keys 

The java.security.Key interface encapsulates a cryptographic key. It defines only three methods: 

public String getAlgorithm()  

This method returns the name of the cryptographic algorithm for which this key is used. An 
example is DSA, the Digital Signature Algorithm. 

public byte[] getEncoded()  

You can retrieve the encoded value of the key by calling this method. Encoding is a process of 
mapping the key's value into an array of bytes. The getFormat() method will return the name 
of the format used to encode the key. 

public String getFormat()  

This method returns the name of the format used to encode the key. An example is X.509. 

Several interfaces extend the Key interface. These child interfaces define different flavors of keys, but 
none of them defines any additional methods; they are used for clarity and type safety. As we saw in 
Chapter 2, keys are used differently for symmetric ciphers, asymmetric ciphers, and signatures. 
Semantic extensions to the Key interfaces keep the concepts clear. In the JDK, there are two such 
interfaces: 

java.security.PublicKey  

This interface represents the public key of a key pair, suitable for use with a signature or an 
asymmetric cipher (see Chapter 6, and Chapter 7, respectively). When used with a signature, a 
PublicKey is used to verify a signature (see initVerify() in the Signature class). 

java.security.PrivateKey  

This interface represents the other half of a key pair. Just like a public key, a private key can 
be used with a signature or an asymmetric cipher. When used with a signature, however, the 
private key is used to generate the signature (see initSign() in Signature). 

The JCE includes another semantic extension of Key: 

javax.crypto.SecretKey  

This interface represents a secret (or private, or session) key that is used for a symmetric 
cipher. With a symmetric cipher, the same secret key is used to encrypt and decrypt data. 
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Public and private keys are always created in matched pairs. The JDK includes a class, 
java.security.KeyPair , that encapsulates a matched public and private key. It's a very simple 
class: 

public KeyPair(PublicKey publicKey, PrivateKey privateKey)  

This constructor creates a KeyPair with the given public and private keys. 

public PublicKey getPublic()  

This method returns the public key. 

public PrivateKey getPrivate()  

This method returns the private key.  

5.2 Key Generators 

How are keys created? A special class, called a key generator, is used to create new, random keys. 
Three steps are involved in creating cryptographic keys: 

1. Obtain a key generator object for the algorithm you want to use. 

2. Initialize the key generator. 

3. Ask the key generator to generate a key or key pair. 

There are two varieties of key generators. The first generates key pairs for use with asymmetric ciphers 
and signatures. The second kind generates a single key for use with a symmetric cipher. 

5.2.1 KeyPairGenerator 

The java.security.KeyPairGenerator class creates a matched public and private key and returns 
them as a KeyPair. You can create a KeyPairGenerator using one of the getInstance() factory 
methods, as described in Chapter 3. For example, to generate a key pair for ElGamal signing, you 
obtain a KeyPairGenerator as follows: 

KeyPairGenerator kpg = KeyPairGenerator.getInstance("ElGamal"); 

Like any other getInstance() method, this one may throw a NoSuchAlgorithmException if the 
given algorithm is not found. 

Next, the generator needs to be initialized. There are two methods for this: 

public abstract void initialize(int strength, SecureRandom random)  

When keys are generated, they will be created for the given strength using the supplied source 
of random bits. Although the strength of a key almost always refers to its bit length, the 
interpretation of the strength parameter is algorithm dependent. 

public void initialize(int strength)  

This method is the same as the last one, except it creates a new SecureRandom to serve as a 
source of random bits. If you haven't created a new SecureRandom previously in your 
application, this call may take some time to complete as SecureRandom attempts to seed itself. 

Once the KeyPairGenerator is initialized, you can ask it to generate a new, random key pair: 

public abstract KeyPair genKeyPair()  

This method generates a key pair using the strength and random bit source specified in a 
previous call to initialize() . 

If you wanted to generate a 1024-bit key pair suitable for DSA signatures, you would do the following: 

KeyPairGenerator kpg = KeyPairGenerator.getInstance("DSA"); 
kpg.initialize(1024); 
KeyPair pair = kpg.genKeyPair(); 

Depending on the algorithm, key size, and your hardware, you may have to wait 10 or 20 seconds for 
the key pair generation to work. (Remember that it takes a while for the KeyPairGenerator to 
initialize SecureRandom, as we discussed in Chapter 4.) 
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5.2.2 KeyGenerator 

Symmetric ciphers use a single key instead of a key pair. The JCE, therefore, includes a class called 
javax.crypto.KeyGenerator that is suitable for randomly generating a single key. Like its cousin, 
KeyPairGenerator, it can be created using a getInstance() factory method. To create a 
KeyGenerator for the DES cipher, use this: 

KeyGenerator kg = KeyGenerator.getInstance("DES"); 

To initialize the KeyGenerator , give it a source of random data, a strength, or both. Some symmetric 
ciphers algorithms have a fixed key size, while others are variable. (See Chapter 2 for more discussion 
of algorithms and key sizes.) Once the KeyGenerator is initialized, you can create a new key with 
generateKey(). 

public final void init(SecureRandom random)[1]  

This method tells the KeyGenerator to use the given source of random bits to create keys. 

public final void init(int strength)  

This method initializes the KeyGenerator to create keys of the specified length. 

public final void init(int strength, SecureRandom random)  

This method initializes the KeyGenerator with the supplied key strength and source of 
randomness. 

public final SecretKey generateKey()  

This method generates a new, random SecretKey. 

For example, to generate a new DES key, do this: 

KeyGenerator kg = KeyGenerator.getInstance("DES"); 
kg.init(new SecureRandom()); 
SecretKey key = kg.generateKey(); 

5.2.3 Algorithm-Specific Initialization 

Both java.security.KeyPairGenerator and javax.crypto.KeyGenerator support the concept of 
algorithm-specific initialization . This means that if you know what algorithm you'll be using, you can 
use parameters that are useful for that particular algorithm to initialize a key generator. 

The thing that makes algorithm-specific initialization work is a little interface with a long name, 
java.security.spec.AlgorithmParameterSpec . This interface defines no methods or constants. 
Think of it as a box for parameters. You can pass an AlgorithmParameterSpec to a key generator to 
initialize it; it's up to the key generator to extract parameters from whatever object was passed to it. 

java.security.KeyPairGenerator contains one method for algorithm-specific initialization: 

public void initialize(AlgorithmParameterSpec params) throws 
InvalidAlgorithmParameterException  

This method initializes the KeyPairGenerator using the supplied parameters. If the 
AlgorithmParameterSpec object is not recognized, an exception is thrown. 

And in javax.crypto.KeyGenerator , there are two algorithm-specific initialization methods: 

public final void init(AlgorithmParameterSpec params) throws 
InvalidAlgorithmParameterException  

This method initializes the KeyGenerator using the supplied parameters. If the 
AlgorithmParameterSpec object is not recognized, an exception is thrown. 

public final void init(AlgorithmParameterSpec params, SecureRandom random) throws 
InvalidAlgorithmParameterException  

This method is the same as init(AlgorithmParameterSpec), but the KeyGenerator will use 
the supplied source of randomness to generate keys. 

Algorithm-specific initialization can also be used with Signatures and Ciphers, as you'll see in 
Chapter 6 and Chapter 7, respectively. 
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5.3 Key Translators 

How do you store a key on disk? How do you transmit a key over a network connection? One solution 
is to use object serialization, as we did in the SecretWriting example in Chapter 1. It's more 
common, however, simply to store or transmit the key as an array of bytes. To do this, we need a way 
to translate a Key object into a byte array and vice versa. 

The javax.crypto.spec.SecretKeySpec, javax.crypto.SecretKeyFactory, and java.security 
.KeyFactory classes fill this niche. Although the last two classes are called factories, they function as 
translators. Let's look at SecretKeySpec first because it's simplest.  

5.3.1 SecretKeySpec 

The simplest way to convert an array of bytes to a secret key is the javax.crypto.spec. 
SecretKeySpec class. This class implements the SecretKey interface. You can create it from an array 
of bytes using one of the two constructors: 

public SecretKeySpec(byte[] key, String algorithm)  

This constructor creates a SecretKeySpec using the supplied byte array. The key will have the 
supplied algorithm. 

public SecretKeySpec(byte[] key, int offset, int len, String algorithm)  

This constructor creates a SecretKeySpec using len bytes of the supplied byte array, starting 
at offset. The key will have the supplied algorithm. 

This class is useful for creating keys for Macs, as I demonstrate in Chapter 6. For example, the 
following code creates a MAC key from an array of random data: 

SecureRandom sr = new SecureRandom(); 
byte[] keyBytes = new byte[20]; 
sr.nextBytes(keyBytes); 
SecretKey key = new SecretKeySpec(keyBytes, "HmacSHA1"); 

If you need to do more complicated translations between SecretKeys and other key representations, 
use the SecretKeyFactory class instead.  

5.3.2 SecretKeyFactory 

You can create a SecretKeyFactory using one of its getInstance() methods: 

public static final SecretKeyFactory getInstance(String algorithm) throws 
NoSuchAlgorithmException  

Use this method to create a new SecretKeyFactory for the given algorithm. The algorithm 
name should correspond to a symmetric cipher algorithm name, for example, "DES." 

public static final SecretKeyFactory getInstance(String algorithm, String provider) throws 
NoSuchAlgorithmException, NoSuchProviderException  

This method creates a new SecretKeyFactory, using the implementation supplied by the 
named provider. 

Having obtained a SecretKeyFactory, you are free to translate keys. SecretKeyFactory knows how 
to translate between javax.crypto.SecretKey objects and javax.crypto.spec.KeySpec objects. 
KeySpec is a lot like AlgorithmParameterSpec; it's an interface that defines no methods and no 
constants. Just think of it as a box that holds key data. For example, the JCE comes with a class that 
represents DES key data as a byte array, javax.crypto.spec.DESKeySpec. You can create a KeySpec 
that represents DES key data as follows: 

// obtain key data in keyBytes 
KeySpec spec = new DESKeySpec(keyBytes); 
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5.3.2.1 From things to keys 

To translate a KeySpec into a SecretKey, use SecretKeyFactory's generateSecret() method: 

public final SecretKey generateSecret(KeySpec keySpec) throws InvalidKeySpecException  

This method uses the key information in keySpec to create a SecretKey. If the KeySpec is not 
recognized, an exception is thrown. 

A simple method to create a DES key from an array of bytes looks like this: 

  public SecretKey makeDESKey(byte[] input, int offset) 
      throws NoSuchAlgorithmException, InvalidKeyException, 
      InvalidKeySpecException { 
    SecretKeyFactory desFactory = SecretKeyFactory.getInstance("DES"); 
    KeySpec spec = new DESKeySpec(input, offset); 
    return desFactory.generateSecret(spec); 
  } 

There are three simple steps in the makeDESKey() method: 

1. Obtain a key factory for DES keys using SecretKeyFactory.getInstance(). 

2. Create a KeySpec representing DES key data from the supplied byte array. 

3. Create a SecretKey from the KeySpec using generateSecret(). 

Where do all those exceptions come from? The getInstance() method may throw a 
NoSuchAlgorithmException. If the byte array passed to DESKeySpec's constructor is not the right 
length, it will throw an InvalidKeyException. And finally, the generateSecret() method will throw 
an InvalidKeySpecException if it doesn't recognize the KeySpec type it receives.  

5.3.2.2 From keys to things 

SecretKeyFactory also knows how to create a KeySpec from a SecretKey : 

public final KeySpec getKeySpec(SecretKey key, Class keySpec) throws InvalidKeySpecException  

This method creates a KeySpec from the given SecretKey. The keySpec parameter 
determines the type of object returned by this method. If the SecretKeyFactory doesn't 
recognize the requested class represented by keySpec, or if the SecretKey itself is not 
recognized, this method throws an InvalidKeySpecException. 

For example, the following method shows how to translate a DES key into an array of bytes: 

  public byte[] makeBytesFromDESKey(SecretKey key) 
      throws NoSuchAlgorithmException, InvalidKeySpecException { 
    SecretKeyFactory desFactory = SecretKeyFactory.getInstance("DES"); 
    DESKeySpec spec = 
        (DESKeySpec)desFactory.getKeySpec(key, DESKeySpec.class); 
    return spec.getKey(); 
  } 

This time we use getKeySpec() to create a DESKeySpec from the supplied SecretKey. We request 
that the returned object be a DESKeySpec by passing DESKeySpec.class to getKeySpec(). If the key 
factory doesn't know how to create this kind of KeySpec, or if it doesn't recognize the SecretKey we 
passed it, an exception is thrown.  

5.3.3 KeyFactory 

java.security.KeyFactory is a lot like SecretKeyFactory, except that it deals with public and 
private keys instead of secret keys. As usual, you obtain a KeyFactory using one of its getInstance() 
methods: 

public static final KeyFactory getInstance(String algorithm) throws NoSuchAlgorithmException  

Use this method to create a new KeyFactory for the given algorithm. The algorithm name 
should be an asymmetric cipher algorithm name or a signature algorithm name, like "DSA." 
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public static final KeyFactory getInstance(String algorithm, String provider) throws 
NoSuchAlgorithmException, NoSuchProviderException  

This method creates a new KeyFactory, using the implementation supplied by the named 
provider. 

To convert from a KeySpec to a PublicKey or a PrivateKey, use the generatePublic() and 
generatePrivate() methods: 

public final PublicKey generatePublic(KeySpec keySpec) throws InvalidKeySpecException  

Use this method to create a PublicKey from the supplied KeySpec. If the KeySpec is not 
recognized by this KeyFactory, an exception is thrown. 

public final PrivateKey generatePrivate(KeySpec keySpec) throws InvalidKeySpecException  

Use this method to create a PrivateKey from the supplied KeySpec. 

KeyFactory has a getKeySpec() method that handles both public and private keys: 

public final KeySpec getKeySpec(Key key, Class keySpec) throws InvalidKeySpecException  

This method creates a KeySpec from the given Key. The object returned will be an instance of 
the supplied keySpec class. If the KeyFactory doesn't recognize the given key or the 
requested return type, an exception is thrown.  

5.4 Key Agreement 

A key agreement is a protocol whereby two or more parties can agree on a secret value. The neat thing 
about key agreements is that they can agree on a secret value even while talking on an insecure 
medium (like the Internet). These protocols are called key agreement protocols because they are most 
often used to settle on a session key that will be used to encrypt a conversation. 

5.4.1 Diffie-Hellman 

The most famous key agreement protocol is Diffie-Hellman (DH). Diffie-Hellman was originally 
published in 1976, in a paper that is widely considered to be the genesis of public key cryptography. In 
this section, I'll explain the mathematics behind the algorithm. In the next section, I'll show how the 
javax.crypto.KeyAgreement class encapsulates key agreement algorithms like Diffie-Hellman. 
Here's how it works, mathematically, for a hypothetical exchange between Maid Marian and Robin 
Hood: 

1. First, some central authority chooses a base, g, and a modulus, p, such that g is primitive mod 
p. This means that for every value, b, from 1 to p - 1, there is some value, a, that satisfies ga 
mod p = b. The base and modulus values are used by a group of users, or perhaps as part of 
another standard. At any rate, they may be freely published; knowing them won't do an 
attacker much good. Both Marian and Robin know g and p. 

2. Marian randomly chooses a value, x, and computes We'll call these values xm 
and ym, because they belong to Marian. 

3. Robin randomly chooses an x and calculates a y. We'll call these values xr and yr. 

4. Marian sends Robin ym. Robin, in turn, sends Marian yr. These values may be transmitted 
over an insecure channel, but they cannot be used to authenticate either Robin or Marian. 

5. Marian calculates which is the same as  

6. Robin calculates , which is equal to This is the same as km. 

And presto! Marian and Robin have calculated the same secret value, k, without exchanging it directly. 
They don't even have to know anything about each other, except to be using the same values for g and 
p. But note that Robin and Marian can't authenticate each other using this protocol. All they really 
know is that someone at the other end of the wire knows how to use Diffie-Hellman. What they do 
with the secret value is up to them. Usually, it's used to construct a session key to encrypt a 
subsequent conversation. 
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Diffie-Hellman can easily be expanded to include three or more participants. Let's step through an 
exchange between Maid Marian, Robin Hood, and Will Scarlet. Imagine them sitting around a card 
table; it will help you visualize the flow of information: 

1. As before, some central authority picks values for g and p. All three parties will use the same 
values of g and p. 

2. Each party randomly chooses an x and calculates a y from it. 

3. Each person passes his or her y value to the person sitting to his or her right. Marian gives ym 
to Robin, Robin gives yr to Will, and Will passes yw to Marian. 

4. Now, each person calculates another y value using his or her x value. Marian calculates 

 Robin calculates  and Will calculates 

 

5. Each person passes his or her freshly calculated y value to the right. Marian gives ymw to 
Robin, Robin gives yrm to Will, and Will gives ywr to Marian. 

6. Now the participants calculate the secret value. Marian calculates  Robin 

calculates  and Will calculates  If you do the 

substitutions, you'll see that all of these quantities are equal to  

If there are n participants, n - 1 exchanges of information are required before the secret value can be 
calculated.  

5.4.2 javax.crypto.KeyAgreement 

In JCE 1.2, javax.crypto.KeyAgreement encapsulates key agreement protocols. The SunJCE 
provider includes a KeyAgreement implementation based on Diffie-Hellman. In this implementation, 
x and y are treated as the private and public keys (respectively) in a key pair. You can supply g and p as 
parameters to the Diffie-Hellman KeyPairGenerator. 

To obtain a KeyAgreement object, use one of the getInstance() methods: 

public static final KeyAgreement getInstance(String algorithm) throws NoSuchAlgorithmException  

This method creates a new KeyAgreement for the given algorithm. The name should be a key 
agreement name, like "DH" for Diffie-Hellman. 

public static final KeyAgreement getInstance(String algorithm, String provider) throws 
NoSuchAlgorithmException, NoSuchProviderException  

This method creates a new KeyAgreement, using the implementation supplied by the named 
provider. 

KeyAgreements are initialized with a private key, which is used to calculate the secret value. In 
addition, you can initialize a KeyAgreement with a source of randomness, a set of algorithm-specific 
parameters, or both: 

public final void init(Key key) throws InvalidKeyException  

This method initializes the KeyAgreement using the supplied key. An exception is thrown if 
the key is not the right type. 

public final void init(Key key, SecureRandom random) throws InvalidKeyException  

This method initializes the KeyAgreement with the supplied key and SecureRandom. 

public final void init(Key key, AlgorithmParameterSpec params) throws InvalidKeyException, 
InvalidAlgorithmParameterException  

This method initializes the KeyAgreement with the given key and algorithm-specific 
parameters. 
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public final void init(Key key, AlgorithmParameterSpec params, SecureRandom random) throws 
InvalidKeyException, InvalidAlgorithmParameterException  

This is the init() that does it all. Use this method to initialize the KeyAgreement with the 
given key, algorithm-specific parameters, and source of randomness. 

A key agreement protocol passes through distinct phases. In Diffie-Hellman, for example, a key pair (x 
and y) is first created. The private key is used to initialize the KeyAgreement; it is used to calculate the 
secret value. The private key is also used to calculate the intermediate y values for Diffie-Hellman with 
three or more parties. All the y values are treated as public keys. These are passed to the doPhase() 
method along with a flag that indicates if the last phase has been reached. In Diffie-Hellman with 
more than two parties, the doPhase() method returns a new Key representing an intermediate y 
value. If you think of everyone sitting around a table, you receive intermediate y values (public keys) 
from your left, perform a calculation on these values (doPhase()), and pass the new y values (public 
keys) to your right: 

public final Key doPhase(Key key, boolean lastPhase) throws InvalidKeyException, 
IllegalStateException  

This method executes a phase of the key agreement protocol, using the supplied key. If 
appropriate, the result of the phase is returned as another key. In Diffie-Hellman with three or 
more parties, the intermediate key values are returned as public keys. The lastPhase 
parameter indicates whether the final phase of the key agreement is being performed. 

When all phases of the key agreement protocol have been performed using doPhase(), the secret 
value can be calculated. You can retrieve this value using generateSecret(): 

public final byte[] generateSecret() throws IllegalStateException  

This method returns the secret value of the key agreement protocol as a byte array. If the 
KeyAgreement has not executed all its phases, an IllegalStateException is thrown. 

public final int generateSecret(byte[] sharedSecret, int offset) throws IllegalStateException, 
ShortBufferException  

This method writes the secret value of the key agreement protocol into the supplied array, 
starting at offset. If the array is not long enough, a ShortBufferException is thrown. The 
number of bytes written is returned. 

public final SecretKey generateSecret(String algorithm) throws InvalidKeyException, 
IllegalStateException, NoSuchAlgorithmException  

This method returns the secret value of the key agreement as a SecretKey with the given 
algorithm. If the requested key algorithm is not available, a NoSuchAlgorithmException is 
thrown.  

5.4.3 SKIP 

As I said , the base and modulus used in Diffie-Hellman may be dictated by a standard. One such 
standard is Simple Key Management for Internet Protocols (SKIP) .[2] SKIP uses Diffie-Hellman so 
that Internet hosts can agree on a session key that will be used to encrypt each data packet that is sent 
between them. It can be used in firewalls, to secure communications on a local network, or to create a 
Virtual Private Network (VPN). In this section, I'll demonstrate how to use Java's KeyAgreement 
class to agree on a secret value using the SKIP Diffie-Hellman base and modulus.[3] SKIP defines base 
and modulus values for three different sizes of Diffie-Hellman keys. We'll use the 1024-bit base and 
modulus. 

[2] See http://skip.incog.com/. 

[3] Note that these examples do not provide an authenticated connection; they are still vulnerable to a man-in-
the-middle attack. The examples presented here demonstrate how to use Diffie-Hellman to agree on a secret 
value. Creating an authenticated, confidential communications channel requires a more complicated protocol. 
You could, for example, use cryptographic signatures to authenticate each party. The secret value could be used 
as a DES session key to encrypt subsequent communications. 

http://skip.incog.com/
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First, let's create a class that contains the Diffie-Hellman base and modulus values that SKIP defines. 
Don't take my word for it: You can check these values at http://skip.incog.com/spec/numbers.html. 
In the Skip class, I first define a string that represents the modulus value in hexadecimal. Then I 
create a BigInteger from it and another BigInteger representing the base. Finally, the base and 
modulus are placed in a DHParameterSpec object that I will use later when I generate Diffie-Hellman 
key pairs. 

import java.math.BigInteger; 
 
import javax.crypto.spec.*; 
 
public class Skip { 
  // SKIP's 1024 DH parameters 
  private static final String skip1024String = 
      "F488FD584E49DBCD20B49DE49107366B336C380D451D0F7C88B31C7C5B2D8EF6" + 
      "F3C923C043F0A55B188D8EBB558CB85D38D334FD7C175743A31D186CDE33212C" + 
      "B52AFF3CE1B1294018118D7C84A70A72D686C40319C807297ACA950CD9969FAB" + 
      "D00A509B0246D3083D66A45D419F9C7CBD894B221926BAABA25EC355E92F78C7"; 
 
  // Modulus 
  private static final BigInteger skip1024Modulus = new BigInteger 
     (skip1024String, 16); 
 
  // Base 
  private static final BigInteger skip1024Base = BigInteger.valueOf(2); 
 
  public static final DHParameterSpec sDHParameterSpec =  
 
      new DHParameterSpec(skip1024Modulus, skip1024Base); 
 
} 

5.4.3.1 SkipServer 

This example takes the form of a client/server application. The client connects to the server and sends 
its Diffie-Hellman public key. The server sends the client its own public key. Then the client and server 
calculate the secret values and print them out. If everything works, the values are the same. Let's start 
with the server. 

import java.io.*; 
import java.net.*; 
import java.security.*; 
import java.security.spec.*; 
 
import javax.crypto.*; 
import javax.crypto.spec.*; 
 
import Skip; 
 
public class SkipServer { 
  public static void main(String[] args) throws Exception { 
    int port = Integer.parseInt(args[0]); 

We begin by creating a Diffie-Hellman key pair, using the SKIP parameters. 

    // Create a Diffie-Hellman key pair. 
    KeyPairGenerator kpg = KeyPairGenerator.getInstance("DH"); 
    kpg.initialize(Skip.sDHParameterSpec); 
    KeyPair keyPair = kpg.genKeyPair(); 

Then we wait for a network connection. You can specify the port number to listen on in the command 
line. 

    // Wait for a connection. 
    ServerSocket ss = new ServerSocket(port); 
    System.out.println("Listening on port " + port + "..."); 
    Socket s = ss.accept(); 
    DataOutputStream out = new DataOutputStream(s.getOutputStream()); 
    DataInputStream in = new DataInputStream(s.getInputStream()); 

http://skip.incog.com/spec/numbers.html
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First, the client will send us an encoded Diffie-Hellman public key as an array of bytes. A KeyFactory 
is used to reconstruct the key. 

    // Receive a public key. 
    byte[] keyBytes = new byte[in.readInt()]; 
    in.readFully(keyBytes); 
    KeyFactory kf = KeyFactory.getInstance("DH"); 
    X509EncodedKeySpec x509Spec = new X509EncodedKeySpec(keyBytes); 
    PublicKey theirPublicKey = kf.generatePublic(x509Spec); 

Then we send our public key to the client. 

    // Send the public key. 
    keyBytes = keyPair.getPublic().getEncoded(); 
    out.writeInt(keyBytes.length); 
    out.write(keyBytes); 

Now we can calculate the secret value, using our private key and the client's public key. The secret 
value is as long as the modulus used to generate the Diffie-Hellman keys. In this case, the secret value 
is 1024 bits long. 

    // Generate the secret value. 
    KeyAgreement ka = KeyAgreement.getInstance("DH"); 
    ka.init(keyPair.getPrivate()); 
    ka.doPhase(theirPublicKey, true); 
    byte[] secret = ka.generateSecret(); 
     
    // Clean up.     
    out.close(); 
    in.close(); 

Finally, we print out the secret value in base64. (If you didn't type in the 
oreilly.jonathan.util.Base64 class yet, you can find it in Appendix B.) 

    // Print out the secret value 
    System.out.println(oreilly.jonathan.util.Base64.encode(secret)); 
  } 
} 

You can run SkipServer by telling it what port to use. After it initializes itself, it will print a message 
indicating it's ready to receive a connection: 

C:\ java SkipServer 7999 
 
 
 
 
Listening on port 7999... 

5.4.3.2 SkipClient 

The client is very similar to the server. It begins by generating a Diffie-Hellman key pair. 

import java.io.*; 
import java.net.*; 
import java.security.*; 
import java.security.spec.*; 
 
import javax.crypto.*; 
import javax.crypto.spec.*; 
import Skip; 
 
public class SkipClient { 
  public static void main(String[] args) throws Exception { 
    String host = args[0]; 
    int port = Integer.parseInt(args[1]); 
     
    // Create a Diffie-Hellman key pair. 
    KeyPairGenerator kpg = KeyPairGenerator.getInstance("DH"); 
    kpg.initialize(Skip.sDHParameterSpec); 
    KeyPair keyPair = kpg.genKeyPair(); 

Then we connect to the server, using the host and port number specified on the command line. 

    // Open the network connection. 
    Socket s = new Socket(host, port); 
 
 
    DataOutputStream out = new DataOutputStream(s.getOutputStream()); 
    DataInputStream in = new DataInputStream(s.getInputStream()); 
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In SkipServer, we waited for a public key and then sent our own. In the client, the process is 
reversed. 

    // Send the public key. 
    byte[] keyBytes = keyPair.getPublic().getEncoded(); 
    out.writeInt(keyBytes.length); 
    out.write(keyBytes); 
    // Receive a public key. 
    keyBytes = new byte[in.readInt()]; 
    in.readFully(keyBytes); 
    KeyFactory kf = KeyFactory.getInstance("DH"); 
    X509EncodedKeySpec x509Spec = new X509EncodedKeySpec(keyBytes); 
    PublicKey theirPublicKey = kf.generatePublic(x509Spec); 

As in the server, we generate the secret value using our private key and the other party's public key. 

    // Generate the secret value. 
    KeyAgreement ka = KeyAgreement.getInstance("DH"); 
    ka.init(keyPair.getPrivate()); 
    ka.doPhase(theirPublicKey, true); 
    byte[] secret = ka.generateSecret(); 
     
    // Clean up. 
    out.close(); 
    in.close(); 

We end by printing out the secret value. It is exactly the same as the value that the server prints out. 

    // Print out the secret value 
    System.out.println(oreilly.jonathan.util.Base64.encode(secret)); 
  } 
} 

You can run SkipClient by telling it where the server can be found. In the following example, 
SkipClient connects to the server and prints out the secret value. 

C:\ java SkipClient 172.16.0.2 7999 
uo9Ke+tSyrSN2Q4p9HJ/OVpD7IIWf1PSj1j4D6ZBwgF46bnS9quuKRsVr52FjvdKBe1aAzqxy/e 
gVZXpdIyp9nfqw36yfQXThCNt0O0wLyHfhPcC3fuup900PATahi/5B/8+QT7QlT/KXgFWWup7fs 
PnKQdwhIgosJjgrsdreXE= 
 
 
 
C:\ 

5.4.3.3 Skipper: Multiparty key agreement 

It's a little tricky to use Diffie-Hellman with three or more parties because of the timing involved. 
Imagine all the parties sitting around a table. Each party listens for keys coming from the left, 
performs a phase of the key agreement, and passes the resulting key to the right. 

The following example, Skipper, listens for connections from the left in a separate thread. Skipper 
needs five pieces of information to run: the number of parties involved, a name, a network port 
number for incoming connections (from the left), and an address and a port for outgoing connections 
(to the right). 

Skipper's constructor saves this information in member variables and kicks off a separate thread to 
listen for incoming connections. 

import java.io.*; 
import java.net.*; 
import java.security.*; 
import java.security.spec.*; 
 
import javax.crypto.*; 
import javax.crypto.spec.*; 
 
public class Skipper 
    implements Runnable { 
  protected int mCount; 
  protected String mName; 
  protected int mListenPort; 
  protected String mConnectAddress; 
  protected int mConnectPort; 
 
  protected DataInputStream mIn; 
  protected DataOutputStream mOut; 
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  public Skipper(int count, String name, int listenPort, 
      String connectAddress, int connectPort) throws Exception { 
    mCount = count; 
    mName = name; 
    mListenPort = listenPort; 
    mConnectAddress = connectAddress; 
    mConnectPort = connectPort; 
 
    // Listen for incoming keys in a separate thread. 
    Thread t = new Thread(this); 
    t.start(); 
  } 

It's in the run() method that Skipper listens for incoming connections. 

  public void run() { 
    try { 
      // Create ServerSocket. 
      ServerSocket ss = new ServerSocket(mListenPort); 
      // Wait for an incoming connection. 
      Socket s = ss.accept(); 
      mIn = new DataInputStream(s.getInputStream()); 
    } 
    catch (IOException ioe) { 
      System.out.println(mName + ": " + ioe.toString()); 
    } 
  } 

Skipper's agree() method contains the bulk of the multiple-party key agreement algorithm. After 
creating a key pair and a KeyAgreement object, this method sends and receives keys until the key 
agreement is complete. Then it calculates the secret value and prints it out as a base64 string. 

  public void agree() throws Exception { 
    // Generate a SKIP key pair. 
    KeyPairGenerator kpg = KeyPairGenerator.getInstance("DH"); 
    kpg.initialize(Skip.sDHParameterSpec); 
    KeyPair keyPair = kpg.generateKeyPair(); 
 
    // Create the KeyAgreement. 
    KeyAgreement ka = KeyAgreement.getInstance("DH"); 
    ka.init(keyPair.getPrivate()); 
 
    waitForOutput(); 
 
    PublicKey publicKey = keyPair.getPublic(); 
    // For each party... 
    for (int i = 1; i < mCount; i++) { 
      // Send the current public key. 
      byte[] keyBytes = publicKey.getEncoded(); 
      mOut.writeInt(keyBytes.length); 
      mOut.write(keyBytes); 
      mOut.flush(); 
      // Receive a public key. 
      waitForInput(); 
      keyBytes = new byte[mIn.readInt()]; 
      mIn.readFully(keyBytes); 
      KeyFactory kf = KeyFactory.getInstance("DH"); 
      X509EncodedKeySpec x509Spec = new X509EncodedKeySpec(keyBytes); 
      publicKey = kf.generatePublic(x509Spec); 
      // Do a key agreement phase. 
      Key resultKey = ka.doPhase(publicKey, i == (mCount - 1)); 
      if (resultKey instanceof PublicKey) 
        publicKey = (PublicKey)resultKey; 
    } 
    // Clean up. 
    mOut.close(); 
    mIn.close(); 
    // Calculate the secret value. 
    byte[] secretValue = ka.generateSecret(); 
    System.out.print(mName + ": Secret value = "); 
    System.out.println( 
        oreilly.jonathan.util.Base64.encode(secretValue)); 
  } 
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The waitForOutput() and waitForInput methods are utility methods that wait for the outgoing and 
incoming connections to be established. 

  protected void waitForOutput() throws IOException { 
    boolean connected = false; 
    while (connected == false) { 
      try { 
        // Connect to the next party. 
        Socket s = new Socket(mConnectAddress, mConnectPort); 
        mOut = new DataOutputStream(s.getOutputStream()); 
        connected = true; 
      } 
      catch (ConnectException ce) { 
        try { Thread.sleep(1000); } 
        catch (InterruptedException ie) {} 
        System.out.println(mName + ": couldn't connect, retrying..."); 
      } 
    } 
  } 
 
  protected void waitForInput() throws IOException { 
    while (mIn == null) { 
      try { Thread.sleep(1000); } 
      catch (InterruptedException ie) {} 
      System.out.println(mName +  
         ": no incoming connection, waiting..."); 
    } 
  } 

Finally, Skipper's main() method accepts parameters from the command line and constructs a 
Skipper instance from them. 

  public static void main(String[] args) throws Exception { 
    if (args.length != 5) { 
      System.out.println("Usage: Skipper count name listenPort " + 
          "connectAddress connectPort"); 
      return; 
    } 
    int count = Integer.parseInt(args[0]); 
    String name = args[1]; 
    int listenPort = Integer.parseInt(args[2]); 
    String connectAddress = args[3]; 
    int connectPort = Integer.parseInt(args[4]); 
    Skipper skipper = new Skipper(count, name, listenPort, 
        connectAddress, connectPort); 
    skipper.agree(); 
  } 
} 

You can test this program by starting up different Skipper instances in different command line 
windows. For example, to test a three party key agreement on a single machine, I used the following 
command lines:  

 
C:\ java Skipper 3 Marian 801 localhost 802 
 
C:\ java Skipper 3 Robin 802 localhost 803 
 
C:\ java Skipper 3 Will 803 localhost 801 
 

5.5 The Identity Key Management Paradigm 

JDK 1.1's solution to the thorny problem of key management is a set of classes clustered around 
java.security.Identity. The javakey command-line utility is based on java.security. 

IdentityScope , a subclass of Identity. You can read about javakey in Appendix D. In JDK 1.2, 
identity-based key management is replaced by keystore-based key management, which we'll discuss 
later in this chapter. javakey is replaced by keytool , which we'll also be discussing later. Both 
approaches have their merits, and I'll cover each of them in this chapter. 
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JDK 1.1's approach to key management centers around the Identity class, which represents 
something that possesses a public key. An IdentityScope represents a group of Identity objects. 
IdentityScopes can contain other, nested IdentityScopes. Finally, an extension of Identity, 
java.security.Signer , is an Identity that also possesses a private key . Figure 5.1 shows an 
example. The large IdentityScope (Marian's computer) contains a Signer , Marian, and an 
Identity, Sheriff. It also contains another IdentityScope, Merry Men. This IdentityScope 
contains three Identity objects, one each for Will, Tuck, and Robin. Each Identity contains a 
PublicKey and other relevant information (name, address, phone number, etc.). Each Signer 
contains a matched PublicKey and PrivateKey and other useful information. 

Figure 5.1. Identity-based key management 

 

5.5.1 Key Holders 

Keys usually belong to something - a person, a group of people, a company, a computer, a thread of 
execution, or almost anything else. In the JDK, the java.security.Identity class represents 
something that possesses a key. 

5.5.1.1 Principal 

Identity implements the java.security.Principal interface. A principal is simply something with 
a name: 

public abstract String getName()  

This method returns the Principal's name. 

The Principal interface is used throughout the java.security.acl package. Because it implements 
the Principal interface, the Identity class serves as a bridge between the access control constructs 
of java.security.acl and the key management concepts of java.security. For more information 
on access control, see O'Reilly's book, Java Security.  

5.5.1.2 Identity 

An Identity represents a person, an organization, or anything else that has an associated public key. 
In other words, an Identity is a Principal with a public key. It's useful for holding information 
about other people, like an entry in an address book. An Identity has a name, and as you'll see, can 
also have a scope. A scope is a way of grouping identities so that no two identities in a scope have the 
same name or public key. I'll talk more about scope later. Identity's two constructors allow you to 
specify a name and, optionally, a scope: 

public Identity(String name)  

This constructor creates an unscoped identity. 
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public Identity(String name, IdentityScope scope) throws KeyManagementException  

This constructor creates an identity in the given scope. No two identities in the same scope 
can have the same name. If you try to create a new Identity with the same name as one that 
exists in scope, a KeyManagementException is thrown. 

A set of methods allows manipulation of the identity's public key: 

public PublicKey getPublicKey()  

This method returns the identity's public key. 

public void setPublicKey(PublicKey key) throws KeyManagementException  

This method sets the identity's public key. No two identities in the same scope can have the 
same public key. If you try to use this method to set the public key of an Identity to a 
nonunique value, an exception is thrown. 

Let's say you wanted to examine an identity's public key. You could print the key's algorithm and 
format like this: 

public void printKey(Identity i) { 
  PublicKey k = i.getPublicKey(); 
  System.out.println("  Public key uses " + k.getAlgorithm() + 
      " and is encoded with " + k.getFormat() + "."); 
} 

Identity also has methods for managing certificates. An Identity can hold a list of certificates that 
vouch for the authenticity of its public key. This is akin to a real person carrying around several forms 
of identification. You can manage an Identity's certificate list with a trio of methods:[4] 

[4] As we'll see in Chapter 6, there are actually two kinds of certificates, which makes life very confusing. The 
java.security.Certificate interface was introduced in JDK 1.1 and is now deprecated. In JDK 1.2, 
java.security.cert.Certificate is the official certificate class. The certificate management 
methods I present here for Identity correspond to the new certificate class. Although Identity has 
methods that use the old certificate interface, they are deprecated. 

public void addCertificate(Certificate certificate) throws KeyManagementException  

You can add a certificate to the Identity's certificate list using this method. If the Identity 
has no public key, its public key is set using the key contained by the given certificate. If the 
Identity already has a public key defined, it must be the same as the key in the certificate; 
otherwise, an exception is thrown. 

public void removeCertificate(Certificate certificate) throws KeyManagementException  

This method removes the given certificate from this Identity. It throws an exception if the 
given certificate is not in this Identity's certificate list. 

public Certificate[] getCertificates()  

This method returns an array containing the certificate list. 

Identity, useful as it seems, is defined as an abstract class and may not be instantiated directly. It 
has no abstract methods, however, so it's trivial to create a concrete subclass: 

import java.security.*; 
 
public class ConcreteIdentity extends Identity { 
  public ConcreteIdentity(String name) { super(name); } 
} 

I'll use this technique later in this chapter, in the section on KeyManager. 

5.5.1.3 Signer 

java.security.Signer is a subclass of Identity that adds support for private key management. 
Two additional methods are defined: 

public PrivateKey getPrivateKey()  

This method returns the signer's private key. 
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public final void setKeyPair(KeyPair pair) throws InvalidParameterException, KeyException  

This method sets the signer's public and private keys. If something goes wrong, an exception 
is thrown. This method is provided instead of a setPrivateKey() because public and private 
keys always come in pairs. 

5.5.2 IdentityScope 

Identities can have a scope. The identity of Marian, for example, might have the scope of the Royal 
Castle. There might be a different Marian identity within the scope of the Village, with a different set 
of keys and certificates. An IdentityScope represents this concept in the Security API. An 
IdentityScope has a name and contains Identity objects. In a tricky twist of object-oriented design, 
IdentityScope actually descends from Identity.[5] This means that scopes can be nested; one 
IdentityScope can contain another. No two identities in a given scope can have the same public key 
or name. 

[5] Actually, this is a standard design pattern, but if you haven't seen it before, it takes a while to get used to it. 

JDK 1.1 comes with a command line tool, javakey, that manages a special IdentityScope, the 
system scope. The class used as the system scope is determined by the system.scope property in the 
lib/security/java.security file found in the JDK installation directory. The default class is 
sun.security.provider.IdentityDatabase , which is a subclass of IdentityScope. It is this class 
that knows how to serialize itself to and from the identitydb.obj file. All identities that are managed by 
javakey live in the flat namespace of the system scope. Appendix D has more information on using 
javakey. 

In JDK 1.2, javakey has disappeared in a puff of smoke. It is replaced by two new utilities, keytool 
and jarsigner. I'll talk about keytool later in this chapter in the section on keystore-based key 
management. jarsigner will be discussed in Chapter 8. Even though javakey is gone in JDK 1.2, 
however, the Identity and IdentityScope classes still exist. In JDK 1.1, you can access the system 
scope using the getSystemScope() static method in the IdentityScope class. In JDK 1.2, this 
method returns null. 

If you're still running JDK 1.1, here's a simple program that prints out the algorithm and encoding of 
the public key of the identity named on the command line. It pulls information about the named 
identity from the system identity scope. 

import java.security.*; 
import java.util.*; 
 
public class ShowKey { 
  public static void main(String[] args) { 
    if (args.length < 1) { 
      System.out.println("Usage: ShowKey name"); 
      return; 
    } 
 
    IdentityScope systemScope = IdentityScope.getSystemScope(); 
    Identity i = systemScope.getIdentity(args[0]); 
    Key k = i.getPublicKey(); 
    if (k != null) { 
      System.out.println("  Public key uses " + k.getAlgorithm() + 
          " and is encoded by " + k.getFormat() + "."); 
    } 
  } 
} 

In this example, we use getIdentity() to retrieve an Identity from the system scope. 
IdentityScope defines a complete set of Identity-manipulating methods: 

public abstract void addIdentity(Identity identity) throws KeyManagementException  

This method adds the given Identity to this scope. If the Identity's name or public key is 
already used in this scope, an exception is thrown. 

public abstract void removeIdentity(Identity identity) throws KeyManagementException  

Use this method to remove the given Identity from this scope. If the identity does not exist 
in this scope, an exception is thrown. 
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public abstract int size()  

Use this method to get the number of identities within this scope. 

public abstract Enumeration identites()  

This method returns an Enumeration of the identities within this scope. 

public abstract Identity getIdentity(String name)  

This method returns the named Identity or null if it is not contained in this scope. 

public abstract Identity getIdentity(PublicKey key)  

This method returns the Identity with the given public key or null if it is not contained in 
this scope. 

public Identity getIdentity(Principal principal)  

This method returns the Identity with the same name as the given Principal or null if it is 
not contained in this scope. 

Because an IdentityScope is an Identity, it can belong to another scope. Furthermore, it can have a 
public key and certificates. Is this useful? Perhaps. For example, you might create an IdentityScope 
that represented an entire company. Each employee of the company would be represented by an 
Identity inside the company IdentityScope. But the company itself has an identity; it might make 
sense that it would have a public key, too, especially if the company sells software that is 
cryptographically signed. A logical place to store the public key for the company would be in the 
company's IdentityScope. 

Note that an IdentityScope cannot be a Signer because both classes descend from Identity.  

5.5.3 KeyManager 

In this section, I'll develop a class to manage keys and identities. It encapsulates the following 
information: 

• A public and private key pair 

• A list of identities 

Essentially, KeyManager is an IdentityScope with a private key. Internally, it uses a Hashtable to 
keep track of its contained identities. Additionally, the KeyManager class knows how to save and load 
itself from a file. I'll use this class in Chapter 10, for the SafeTalk application, and in Chapter 11, for 
the CipherMail application. 

JDK 1.2 includes a more full-featured key management class, java.security.KeyStore, which I'll 
talk about a little later. The KeyManager class I'll develop here is similar to KeyStore, but it doesn't 
include any support for certificates. Although this limits its usefulness, it also makes KeyManager a 
simpler class. 

To make KeyManager a generally useful tool, I've included a command-line interface for managing 
keys and identities. You can create a new KeyManager file, import and export keys, remove identities, 
and list the contents of the KeyManager file: 

java KeyManager -c keyfile signer algorithm strength  

The -c option creates a new KeyManager instance and saves it in a file named keyfile. It 
generates a new key pair using the given algorithm and strength and assigns the key pair to 
the named signer. 

java KeyManager -e keyfile idname outfile  

The -e option exports a public key. First, a KeyManager instance is created from the given file, 
keyfile. Then the public key belonging to idname is exported to the given file, outfile. 

java KeyManager -i keyfile infile  

The -i option imports a public key from the given file, infile. The key and its owner's name 
are added to the KeyManager contained in keyfile. 
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java KeyManager -r keyfile idname  

The -r option removes the named identity, idname, from the KeyManager contained in 
keyfile. 

java KeyManager -l keyfile  

The -l option lists the contents of the KeyManager contained in keyfile. 

The class itself is not complicated. As I said, it's basically an IdentityScope with a private key, and 
thus KeyManager descends from IdentityScope. Most of the class deals with implementing the 
methods of IdentityScope and the KeyManager command-line interface. Member variables are used 
to keep track of the KeyManager's identities (using a Hashtable) and the private key. 

package oreilly.jonathan.security; 
 
import java.io.*; 
import java.security.*; 
import java.text.NumberFormat; 
import java.util.*; 
 
public class KeyManager 
    extends IdentityScope { 
  protected PrivateKey mPrivateKey; 
  protected Hashtable mIdentities; 

KeyManager saves itself to a file using object serialization. It doesn't make much sense, however, to 
save the name of the file as part of the KeyManager. Thus, the variable representing the filename, 
mKeyFile, is marked transient so it doesn't get serialized along with the rest of the KeyManager's 
data. 

protected transient String mKeyFile; 

KeyManager's only constructor is protected. Later on, I'll develop a static method, getInstance(), 
to create KeyManager instances from files. KeyManagers are created with a name and a key pair that 
belongs to the name. 

  protected KeyManager(String name, KeyPair pair) { 
    super(name); 
    try { setPublicKey(pair.getPublic()); } 
    catch (KeyManagementException kme) {} 
    mPrivateKey = pair.getPrivate(); 
    mIdentities = new Hashtable(); 
  } 

The next six methods are implementations of abstract IdentityScope methods. They use the internal 
Hashtable to manage the list of identities. 

  public int size() { return mIdentities.size(); } 
  public Enumeration identities() { return mIdentities.elements(); } 
   
  public synchronized Identity getIdentity(String name) { 
    Enumeration e = mIdentities.elements(); 
    while (e.hasMoreElements()) { 
      Identity i = (Identity)e.nextElement(); 
      if (i.getName().equals(name)) 
        return i; 
    } 
    return null; 
  } 
   
  public Identity getIdentity(PublicKey key) { 
    return (Identity)mIdentities.get(key); 
  } 
   
  public synchronized void addIdentity(Identity identity) 
      throws KeyManagementException { 
    if (mIdentities.contains(identity)) 
      throw new KeyManagementException("This KeyManager already contains " 
          + identity.getName() + "."); 
    if (mIdentities.containsKey(identity.getPublicKey())) 
      throw new KeyManagementException("This KeyManager already contains " 
          + identity.getName() + "'s key."); 
    mIdentities.put(identity.getPublicKey(), identity); 
  } 
     



Java Cryptography 

 page 58

  public synchronized void removeIdentity(Identity identity) 
      throws KeyManagementException { 
    PublicKey key = identity.getPublicKey(); 
    if (mIdentities.containsKey(key)) 
      mIdentities.remove(key); 
    else 
      throw new KeyManagementException("This KeyManager does not contain " 
          + identity.getName() + "."); 
  } 

As a convenience, KeyManager will return the public key corresponding to a given name, even if the 
name is the name of the whole KeyManager. 

  public synchronized PublicKey getPublicKey(String name) { 
    if (name.equals(getName())) 
      return getPublicKey(); 
    return getIdentity(name).getPublicKey(); 
  } 

The private key can be retrieved using getPrivateKey(). 

public PrivateKey getPrivateKey() { return mPrivateKey; } 

KeyManager includes an overloaded version of addIdentity() that accepts a name and a public key. 
It creates a KeyManagerIdentity and adds it to the KeyManager. KeyManagerIdentity is a private 
inner class, a concrete subclass of Identity, which is abstract. I'll come to it in a little while. 

   public void addIdentity(String name, PublicKey key) 
      throws KeyManagementException { 
    Identity i = new KeyManagerIdentity(name); 
    i.setPublicKey(key); 
    addIdentity(i); 
  } 

The getInstance() static method is used to obtain a KeyManager from a file. It attempts to 
deserialize a KeyManager from the given file. If it is successful, it sets the mKeyFile member variable 
so that the KeyManager will know how to save itself (see save() later in this section). 

   public static KeyManager getInstance(String file) 
      throws IOException, ClassNotFoundException { 
    ObjectInputStream in = new ObjectInputStream( 
        new FileInputStream(file)); 
    KeyManager km = (KeyManager)in.readObject(); 
    in.close(); 
    km.mKeyFile = file; 
    return km; 
  } 

Brand-new KeyManagers must be created with a name and a key pair. The static method create() 
takes care of this by calling the protected KeyManager constructor. Like getInstance(), 
create()sets the mKeyFile variable. 

  public static KeyManager create(String file, String name, KeyPair pair) { 
    KeyManager km = new KeyManager(name, pair); 
    km.mKeyFile = file; 
    return km; 
  } 

The save() method simply attempts to serialize the KeyManager to the file named by mKeyFile. 

  public synchronized void save() { 
    try { 
      ObjectOutputStream out = new ObjectOutputStream( 
          new FileOutputStream(mKeyFile)); 
      out.writeObject(this); 
      out.close(); 
    } 
    catch (Exception e) { 
      System.out.println("KeyManager.save: " + e.toString()); 
    } 
  } 

The KeyManagerIdentity inner class is used in addIdentity() , shown previously. It subclasses the 
abstract Identity class and provides a single constructor that accepts a name. 

  private static class KeyManagerIdentity 
      extends Identity { 
    public KeyManagerIdentity(String name) { super(name); } 
  } 
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The main() method in KeyManager implements the command-line interface. 

  public static void main(String[] args) throws Exception { 
    if (args.length < 2) { 
      usage(); 
      return; 
    } 
    String option = args[0]; 
    String keyfile = args[1]; 

The -c option creates a new KeyManager file. It generates a key pair using the given algorithm and key 
size and uses KeyManager's create() method to create a new KeyManager instance. The instance is 
saved to disk using save(). 

    if (option.indexOf("c") != -1) { 
      if (args.length < 5) { usage(); return; } 
      String signer = args[2]; 
      String algorithm = args[3]; 
      int strength = NumberFormat.getInstance().parse(args[4]).intValue(); 
      System.out.println("Initializing the KeyPairGenerator..."); 
      KeyPairGenerator kpg = KeyPairGenerator.getInstance(algorithm); 
      kpg.initialize(strength); 
      System.out.println("Generating the key pair..."); 
      KeyPair pair = kpg.genKeyPair(); 
      KeyManager km = create(keyfile, signer, pair); 
      km.save(); 
      System.out.println("Done."); 
    } 

The -e option exports a public key. After constructing a KeyManager instance from the given file, the 
named key is retrieved. Then the identity's name and public key are serialized to the given output file. 

    else if (option.indexOf("e") != -1) { 
      if (args.length < 4) { usage(); return; } 
      String idname = args[2]; 
      String outfile = args[3]; 
      KeyManager km = getInstance(keyfile); 
      ObjectOutputStream out = new ObjectOutputStream( 
          new FileOutputStream(outfile)); 
      PublicKey key = km.getPublicKey(idname); 
      out.writeObject(idname); 
      out.writeObject(key); 
      out.close(); 
      System.out.println("Done."); 
    } 

Exported keys can be imported using the -i option. A KeyManager is obtained, as before, using 
getInstance(). Then the input file is deserialized and the name and public key are added to the 
KeyManager instance. 

    else if (option.indexOf("i") != -1) { 
      if (args.length < 3) { usage(); return; } 
      String infile = args[2]; 
      KeyManager km = getInstance(keyfile); 
      ObjectInputStream in = new ObjectInputStream( 
          new FileInputStream(infile)); 
      String idname = (String)in.readObject(); 
      PublicKey key = (PublicKey)in.readObject(); 
      in.close(); 
      km.addIdentity(idname, key); 
      km.save(); 
      System.out.println("Done."); 
    } 

The -r option is used to remove an identity from a KeyManager. 

    else if (option.indexOf("r") != -1) { 
      if (args.length < 3) { usage(); return; } 
      String idname = args[2]; 
      KeyManager km = getInstance(keyfile); 
      Identity i = km.getIdentity(idname); 
      km.removeIdentity(i); 
      km.save(); 
      System.out.println("Done."); 
    } 
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Finally, the -l option lists the contents of a KeyManager file. 

    else if (option.indexOf("l") != -1) { 
      if (args.length < 2) { usage(); return; } 
      KeyManager km = getInstance(keyfile); 
      System.out.println("KeyManager contents of " + keyfile + ":"); 
      System.out.println("  public and private key for " + km.getName()); 
      Enumeration e = km.identities(); 
      while (e.hasMoreElements()) { 
        Identity i = (Identity)e.nextElement(); 
        System.out.println("  public key for " + i.getName()); 
      } 
    } 
  } 

The last method in KeyManager, usage() , is a helper method that prints out the command-line 
options for KeyManager. 

  protected static void usage() { 
    System.out.println("Options:"); 
    System.out.println("  create: -c keyfile signer algorithm strength"); 
    System.out.println("  export: -e keyfile idname outfile"); 
    System.out.println("  import: -i keyfile infile"); 
    System.out.println("  remove: -r keyfile idname"); 
    System.out.println("  list  : -l keyfile"); 
  } 
} 

In Chapter 10 and Chapter 11, I'll use KeyManager as part of cryptographic applications.  

5.6 The KeyStore Key Management Paradigm 

JDK 1.2 offers a new method for key management, based on java.security.KeyStore . A KeyStore 
is a handy box that holds keys and certificates. One KeyStore contains all the information a single 
person (or application, or identity) needs for authentication. Usually, you have two distinct uses for 
authentication: 

• You need to prove to others who you are. 

• You need to make sure that other people are legitimate. 

In the first case, you can use a private key to sign data. A certificate that contains the matching public 
key can be used to prove your identity. In the second case, you can use other people's certificates to 
prove to yourself that they are who they say they are. I'll talk more about certificates in Chapter 6. For 
now, just think of them as containers for someone's public key and information about that person. 

You may have more than one private/public key pair that you need to manage. For example, you 
might have a key pair that you use for day-to-day Internet shopping and a different key pair that you 
use for signing software you've written. (The KeyManager class, presented earlier in this chapter, holds 
only a single key pair.) 

A KeyStore contains two types of entries. The first type contains a private key and a chain of 
certificates that correspond to the matching public key. I'll call this type of entry a private key entry. 
This is useful for signing and distributing code and other data. The private key is used to sign data; the 
certificates can be presented as credentials backing up the signature. The second type of keystore 
entry contains a certificate from someone you trust. I'll call this type of entry a trusted certificate 
entry. This can be used in tandem with the security policy utility, policytool, to define a security 
policy for a trusted code signer. 

KeyStore holds all this information, organized by aliases, or short names. Entries are stored and 
retrieved using an alias, similar to the way a Hashtable or Properties object works. Figure 5.2 shows 
an example KeyStore that Maid Marian might find useful. It contains two key pair entries, one for 
signing applets and one for signing email messages. It also contains three different certificate chains, 
corresponding to Will, Tuck, and Robin. These certificate chains are used to associate the people 
Marian knows and their public keys. Each entry is identified by an alias; for example, "CodeKeys" or 
"WillScarlet." 
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Figure 5.2. Keystore-based key management 

 

5.6.1 KeyStore 

5.6.1.1 Getting 

KeyStore is an abstract class, but you can obtain a concrete subclass using getInstance() : 

public static final KeyStore getInstance() throws KeyStoreException  

This method returns a KeyStore instance. 

KeyStore's getInstance() method uses a line in the java.security properties file to decide what 
subclass of KeyStore to create. The line might look like this: 

keystore=oreilly.jonathan.security.SuperDuperKeyStore 

If the line is missing, getInstance() uses the default KeyStore implementation, 
sun.security.tools.JavaKeyStore . 

5.6.1.2 Loading and saving 

Two methods support loading and saving KeyStores. A passphrase checks the integrity of the data: 

public abstract void store(OutputStream stream, String password) throws IOException, 
NoSuchAlgorithmException, CertificateException  

Use this method to save the KeyStore's data to the given stream. The format of the data 
depends entirely on the KeyStore implementation. The supplied passphrase generates an 
integrity check for the keystore's data, which should also be stored. 

public abstract void load(InputStream stream, String password) throws IOException, 
NoSuchAlgorithmException, CertificateException  

This method loads keystore data from the given InputStream. Again, the format of the data 
depends on the KeyStore implementation. This method should be able to load data written 
using the store() method. It should also perform a check on the data's integrity, using the 
supplied passphrase. 

The integrity check is important because, properly implemented, it provides some assurance that no 
one has monkeyed with the keystore data. The simplest case would be to store a message digest of the 
keystore along with the keystore. When loading, you could compare the stored message digest with a 
freshly computed message digest based on the keystore's data. This scheme is subject to attack, 
however, as it would be easy to substitute new keystore data and a new message digest value. The 
password (or passphrase) is used to foil this attack. Typically, the passphrase is digested with the rest 
of the keystore data; the resulting digest value is stored with the keystore. When loading, the same 
password is needed to generate the same digest value. If the two digest values don't match, then either 
the wrong password was used or the keystore data has been modified. 
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5.6.1.3 Adding private key entries 

Let's say, for example, that you had a key pair that you wanted to add to a KeyStore. Instead of adding 
the keys directly, you add a private key and a certificate chain that represents the corresponding 
public key. If you have a self-signed certificate that contains your public key, you can add it as a 
certificate chain that contains just the one certificate. 

public abstract void setKeyEntry(String alias, PrivateKey key, String passphrase, Certificate[] chain) 
throws KeyStoreException  

This method assigns the given private key and certificate chain to alias. If the alias already 
exists, its current key and certificate information is replaced with the new values. The private 
key is "protected" using the supplied passphrase. It's up to subclasses of KeyStore to decide 
what protection will be used for the private key. 

Note that KeyStore doesn't specify exactly how a passphrase should be used to protect a private key in 
the database. This implementation is left to subclasses. This means that the security provided from 
this passphrase can range from totally ineffective to moderately strong. Let's examine a few 
possibilities: 

Brain-dead protection  

The simplest possible scheme might be to store the private key and the passphrase in plaintext 
when the KeyStore is saved. That way, you could recover the key and the passphrase easily; 
the key could be accessed only if a matching passphrase was supplied. This system is not 
secure at all: it's a piece of cake for anyone who examines the KeyStore's file to recover both 
the private key and the passphrase. 

Weak encryption  

It's possible to encrypt the private key by scrambling the passphrase and combining it with the 
private key. This won't foil real cryptanalysis, but it is probably effective in preventing casual 
snoops and amateur crackers from recovering your private key. This is the scheme used by 
Sun's implementation of KeyStore, sun.security.tools.JavaKeyStore. 

Strong encryption  

The best solution would be to use passphrase-based encryption (described in Chapter 7). In 
this scheme, a passphrase is used to generate a session key; the session key is used with a 
symmetric cipher to encrypt the original private key before it is saved with the KeyStore. 
Depending on the cipher algorithm, this can be quite effective in hiding the private key. 

This is a different use of a passphrase from what we saw earlier, with store() and load(). In those 
methods, a passphrase is used to protect the integrity of the keystore data as a whole. Here, a 
passphrase is used for confidentiality, to obscure a private key. 

5.6.1.4 Adding trusted certificate entries 

KeyStore can also hold certificates containing other people's public keys. You can add a certificate to 
the KeyStore using setCertificateEntry() : 

public abstract setCertificateEntry(String alias, Certificate cert) throws KeyStoreException  

This method associates alias with the given certificate. If the alias already exists, the current 
certificate is replaced with the new one. 

You can't add a whole certificate chain. If you receive a certificate chain corresponding to someone's 
public key, you can add each certificate in the chain as a trusted certificate entry. 

5.6.1.5 Retrieving entries 

Once you have entered information into the KeyStore, you may retrieve it with several get methods: 

public abstract PrivateKey getPrivateKey(String alias, String passphrase) throws 
NoSuchAlgorithmException, UnrecoverableKeyException  

You can use this method to retrieve the private key associated with alias. The given 
passphrase is used to undo whatever protection has been applied to the private key. 
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public abstract Certificate[] getCertificateChain(String alias)  

This method returns the certificate chain associated with alias. 

public abstract Certificate getCertificate(String alias)  

This method returns the certificate associated with alias.  

5.6.2 keytool 

keytool is a command-line interface to the java.security.KeyStore class. As we've seen, a 
KeyStore is a simple database for private keys, public keys, and certificates. Each entry in the 
KeyStore has an alias that identifies it. Entries are always referenced using an alias. 

By default, KeyStore s are saved in files on your hard disk. One KeyStore fits in one file. keytool can 
be used to manage any number of KeyStore files. If you don't specify a KeyStore file when using 
keytool, the default file will be used. This is a file called .keystore, located in the directory determined 
by the HOMEDRIVE and HOMEPATH environment variables. The values of these variables are 
concatenated; if they form a valid path, then the default .keystore file is located in this directory. 
Otherwise, .keystore is located in the JDK installation directory. 

KeyStores don't necessarily have to be stored in files; this is just the default implementation. You can 
change this default implementation; I'll get to this later. 

5.6.2.1 Creating a key pair 

You can create a key pair using the -genkey command option.[6] 

[6] My Win95 machine won't let me type a command line this long. I had to put the command line in a batch file 
and run the batch file. 

C:\ keytool -genkey -alias Jonathan -keyalg DSA -keysize 1024 -dname  
"CN=Jonathan Knudsen, OU=Technical Publications, O=O'Reilly & Associates,  
C=US" -keypass buendia -storepass buendia 
 
C:\ 

I'll explain each of the options in detail: 

-genkey  

This command option tells keytool to generate a new key pair. This key pair is used to create 
a private key entry in the keystore. The public key is placed inside a self-signed certificate. 

-alias  

Just as you'd think, this option is used to associate an alias with the keystore entry. 

-keyalg  

This option specifies the algorithm for which you want keys generated. 

-keysize  

Use this option to specify the size of the key pair you are generating. Here, I specified the 
maximum size for DSA keys, 1024 bits. 

-dname  

This entry is used to specify a distinguished name (DN) .[7] A DN contains your name and 
places you in a hierarchy based on countries and organizations (companies, universities, etc.). 
In the preceding example, I've identified my real name, my company, my group within the 
company (Technical Publications), and the country I live in. Here is a complete list of DN 
fields that keytool recognizes: 

[7] Distinguished names are described in X.500, a document published by the International 
Telecommunications Union (ITU). To order the document online, visit http://www.itu.ch/. 

CN (common name): your name 
OU (organizational unit): the part of your organization to which you belong 
O (organization): your organization 
L (locality): usually, a city 
S (state): a state or province 
C (country): a country 

http://www.itu.ch/
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You don't have to include every DN field. In the example, I left out both the L and S fields. At the very 
least, you need to specify a common name, the CN field. Also, you should specify the fields in order, as 
shown in the preceding list. 

You'll notice that the DN is enclosed in quotes in the example just shown. This ensures that the entire 
DN string is treated as a single command-line argument to keytool. 

-keypass  

This passphrase is used to protect the private key of the new key pair. Note that anyone 
peeking over your shoulder will be able to see this password. Also, the actual protection 
applied depends on the KeyStore implementation you're using (see the description of 
KeyStore earlier in this section). You will have to type the same passphrase to access the 
private key at a later date.  

-storepass  

This passphrase protects the integrity of the entire keystore. Because I am using the -genkey 
option to create a new keystore, I am setting the keystore's passphrase with this option. Later 
operations on this keystore require that I type the same passphrase. 

I could have used a few other options: 

-sigalg  

When you generate a key pair using -genkey, the public key is automatically placed in a self-
signed certificate. This option is used to specify the algorithm that will be used to sign the 
certificate. Because the newly created private key is used to sign the certificate, -sigalg will 
always be the same as -keyalg. 

-validity  

The -validity option tells keytool how long the certificate should be valid. Specify a 
number of days. 

-keystore  

This option is used to specify the keystore file to use. If you leave off this option (as we did 
earlier), the default keystore file will be used. This is the .keystore file, usually located in your 
home directory. In Windows, check in the \ windows directory. 

-v  

This option tells keytool to be verbose, that is, to print out detailed information about what 
it's doing. You can use this option with every keytool command. 
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5.6.2.2 Ubiquitous options and defaults 

Several of keytool's options can be used with any command. These are-keystore, -storepass, and 
-v. 

keytool is forgiving if you forget an option that it needs; in many cases, there is a default value. If 
there is not, keytool will prompt you for the missing information. The default values are shown in 
Table 5.1. 

Table 5.1, Default Values for keytool Options 

Option Default Value 

-alias mykey 

-keyalg DSA 

-keysize 1024 

-sigalg DSA/SHA-1 

-validity 90 

-keystore Default.keystore file 

-file Standard input or output 

 
5.6.2.3 Inspecting the keystore 

To see the contents of a keystore, use the -list command: 

C:\ keytool -list -storepass buendia 
 
Your keystore contains 1 entry: 
 
jonathan, Mon Jan 12 16:16:59 EST 1998, keyEntry, 
Certificate MD5 Fingerprint: 56:E0:FD:24:13:6C:51:C0:D9:57:B4:33:7F:79:A8:4E 
 
C:\ 

If you use the -v option in conjunction with -list , you'll get a much more detailed report: 

C:\ keytool -list -storepass buendia -v 
 
Your keystore contains 1 entry: 
 
ALIAS: jonathan 
Creation Date: Mon Jan 12 16:16:59 EST 1998 
 
Entry type: keyEntry 
 
CERT CHAIN Length: 1 
 
CERT[1]: 
Owner: CN=Jonathan Knudsen, OU=Technical Publications, O=O'Reilly & Associates, 
C=US 
Issuer: CN=Jonathan Knudsen, OU=Technical Publications, O=O'Reilly & Associates, 
C=US 
Serial Number: 34ba884a 
Valid from: Mon Jan 12 16:16:58 EST 1998 until: Mon Jan 19 16:16:58 EST 1998 
Certificate Fingerprints: 
  MD5:  56:E0:FD:24:13:6C:51:C0:D9:57:B4:33:7F:79:A8:4E 
  SHA1: 6C:04:8A:AC:02:13:0B:55:7C:4C:BD:E5:57:4C:83:4D:1E:B5:BF:3B 
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******************************************* 
******************************************* 
 
C:\ 

Finally, you can use the -alias option to view a single keystore entry : 

C:\ keytool -list -alias Jonathan -storepass buendia 
Jonathan, Mon Jan 12 16:16:59 EST 1998, keyEntry, 
Certificate MD5 Fingerprint: 56:E0:FD:24:13:6C:51:C0:D9:57:B4:33:7F:79:A8:4E 
 
C:\ 

5.6.2.4 Generating a CSR 

To get a real certificate, signed by a Certificate Authority (CA), you need to generate a Certificate 
Signing Request (CSR). The CSR is a special file that contains your public key and information about 
you. It is signed with your private key. When you send a CSR to a CA, the CA will make some effort to 
verify your identity and to verify the authenticity of the CSR. Then it can issue you a certificate, signed 
with the CA's private key, that verifies your public key. We'll talk about how to import the returned 
certificate later. 

To generate the CSR, use the -csr command option: 

C:\ keytool -csr -alias Jonathan -file Jonathan.csr -keypass buendia  -
storepass buendia -v 
Certification request stored in file <Jonathan.csr>. 
Submit this to your certificate authority. 
 
C:\ 

The options for -csr are as follows: 

-alias  

The certificate request is generated for the specified alias. The public key of the given alias will 
be contained in the certificate returned from the CA. The private key of the alias is used to 
sign the CSR itself. 

-sigalg  

This option tells keytool which algorithm to use to sign the CSR. It defaults to DSA. 

-file  

Use this option to specify a file for the CSR. In the example, the CSR is written to 
Jonathan.csr. 

-keypass  

The CSR is signed with the private key of the named alias. To access this private key, you must 
supply the key's password using the -keypass option. 

As before, the -keystore , -keypass , and -v options are all available. 

So what does the CSR look like? Basically it's just a long string of base64 data. You can send it to your 
CA via FTP, HTTP, or email. The format is specified in PKCS#10, one of RSA's PKCS documents.[8] 

[8] You can find the PKCS documents at http://www.rsa.com/rsalabs/pubs/PKCS/. 
C:\ type Jonathan.csr 
-----BEGIN NEW CERTIFICATE REQUEST----- 
MIICbTCCAisCAQAwaTELMAkGA1UEBhMCVVMxHjAcBgNVBAoTFU8nUmVpbGx5ICYgQXNzb2NpYXRl 
czEfMB0GA1UECxMWVGVjaG5pY2FsIFB1YmxpY2F0aW9uczEZMBcGA1UEAxMQSm9uYXRoYW4gS251 
ZHNlbjCCAbcwggEsBgcqhkjOOAQBMIIBHwKBgQD9f1OBHXUSKVLfSpwu7OTn9hG3UjzvRADDHj+A 
tlEmaUVdQCJR+1k9jVj6v8X1ujD2y5tVbNeBO4AdNG/yZmC3a5lQpaSfn+gEexAiwk+7qdf+t8Yb 
+DtX58aophUPBPuD9tPFHsMCNVQTWhaRMvZ1864rYdcq7/IiAxmd0UgBxwIVAJdgUI8VIwvMspK5 
gqLrhAvwWBz1AoGBAPfhoIXWmz3ey7yrXDa4V7l5lK+7+jrqgvlXTAs9B4JnUVlXjrrUWU/mcQcQ 
gYC0SRZxI+hMKBYTt88JMozIpuE8FnqLVHyNKOCjrh4rs6Z1kW6jfwv6ITVi8ftiegEkO8yk8b6o 
UZCJqIPf4VrlnwaSi2ZegHtVJWQBTDv+z0kqA4GEAAKBgHpPfSlmQI63akljC8SqBiBiELUtEsTW 
jgKzWVJcJdMsJuz1sWl8BF5wEt5YkjMX2xubZ9NkobqHVVf9UT+exaUigVX76h+qFfAvTJIaWwsP 
WqvlijaxtxLDYNcp21MWp7KMamCCsZ1CXI4HjeHsWj2IezEycgtCpg6O341o+KQyoAAwCwYHKoZI 
 
zjgEAwUAAy8AMCwCFDRgtj16NUIvbsKW+8MLHp6gKMW6AhQdP3+nfkUtzo8OGIOgrDUBUj2oDA== 
 
-----END NEW CERTIFICATE REQUEST----- 
 
 
C:\ 

http://www.rsa.com/rsalabs/pubs/PKCS/
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5.6.2.5 Importing certificates 

There are two reasons for importing a certificate to a keystore. First, you may be receiving a certificate 
from a CA in response to a CSR. In this case, you want to associate the certificate with the private key 
entry that was used to generate the CSR. The second case is when you import someone else's 
certificate to make a trusted certificate entry. 

In either case, you will use keytool's -import command option. keytool knows how to import X.509 
certificates in "printable encoding," as described in RFC 1421.[9] This format has a header line, a footer 
line, and a body of base64 data. (For more information about base64, see Appendix B or the sidebar in 
Chapter 1.) Here's an example certificate file: 

[9] See ftp://ds.internic.net/rfc/rfc1421.txt for the whole story on printable encoding. This encoding scheme is 
also sometimes called Privacy Enhanced Mail (PEM) format because it is used in the PEM standard. 

-----BEGIN CERTIFICATE----- 
MIICMTCCAZoCAS0wDQYJKoZIhvcNAQEEBQAwXDELMAkGA1UEBhMCQ1oxETAPBgNV 
BAoTCFBWVCBhLnMuMRAwDgYDVQQDEwdDQS1QVlQxMSgwJgYJKoZIhvcNAQkBFhlj 
YS1vcGVyQHA3MHgwMy5icm4ucHZ0LmN6MB4XDTk3MDgwNDA1MDQ1NloXDTk4MDIw 
MzA1MDQ1NlowgakxCzAJBgNVBAYTAkNaMQowCAYDVQQIEwEyMRkwFwYDVQQHExBD 
ZXNrZSBCdWRlam92aWNlMREwDwYDVQQKEwhQVlQsYS5zLjEMMAoGA1UECxMDVkNV 
MRcwFQYDVQQDEw5MaWJvciBEb3N0YWxlazEfMB0GCSqGSIb3DQEJARYQZG9zdGFs 
ZWtAcHZ0Lm5ldDEYMBYGA1UEDBMPKzQyIDM4IDc3NDcgMzYxMFwwDQYJKoZIhvcN 
AQEBBQADSwAwSAJBAORQnnnaTGhwrWBGK+qdvIGiBGyaPNZfnqXlbtXuSUqRHXhE 
acIYDtMVfK4wdROe6lmdlr3DuMc747/oT7SjO2UCAwEAATANBgkqhkiG9w0BAQQF 
AAOBgQBxfebIQCCxnVtyY/YVfsAct1dbmxrBkeb9Z+xN7i/Fc3XYLig8rag3cfWg 
wDqbnt8LKzvFt+FzlrO1qIm7miYlWNq26rlY3KGpWPNoWGJTkyrqX80/WAhU5B9l 
QOqgL9zXHhE65Qq0Wu/3ryRgyBgebSiFem10RZVavBHjgVcejw== 
-----END CERTIFICATE----- 

To import a certificate to a private key entry, simply name the entry and the file that contains the 
certificate. Let's say that I sent off the CSR from the previous section to my CA, and it sent back a 
certificate. If the certificate is stored in Jonathan.x509, we can import the certificate as follows: 

C:\ keytool -import -alias Jonathan -file Jonathan.x509 -keypass buendia 
  -storepass buendia 

Notice that you must specify the password for the entry's private key to import a certificate for it. 

Importing a certificate to create a trusted certificate entry is just as easy. Suppose we get Marian's 
certificate in a file called Marian.x509. We can create a trusted certficate entry as follows: 

C:\ keytool -import -alias Marian -file Marian.x509 -storepass buendia 
Owner: CN=Maid Marian, OU=Overprotected daughters, O=Royal Castle, C=GB 
Issuer: CN=Certificates R Us, OU=Fables and Legends, O=CRU, C=US 
Serial Number: 34ba884a 
Valid from: Mon Jan 12 16:16:58 EST 1998 until: Mon Jan 19 16:16:58 EST 1998 
Certificate Fingerprints: 
         MD5:  56:E0:FD:24:13:6C:51:C0:D9:57:B4:33:7F:79:A8:4E 
         SHA1: 6C:04:8A:AC:02:13:0B:55:7C:4C:BD:E5:57:4C:83:4D:1E:B5:BF:3B 
Trust this certificate? [no]:  yes 
 
C:\ 

Note that keytool prints out the certificate's fingerprints and asks us whether the certificate should 
be trusted or not. You should verify the fingerprint with the certificate's owner before typing "yes." If 
you don't want to be prompted this way, add the -noprompt option. (I'll talk more about certificates 
and fingerprints in Chapter 6.) 

5.6.2.6 Other options 

keytool's remaining command options are briefly discussed here: 

-selfcert  

This command option tells keytool to regenerate a self-signed certificate for a private key 
entry. You could use it to change the Distinguished Name of a private key entry. This 
command option accepts most of the same options as -genkey , as shown in Table 5.2. 

 

 

 

ftp://ds.internic.net/rfc/rfc1421.txt
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Table 5.2, Self-Signed Certificate Options 

Option Description 

-alias The entry's alias 

-sigalg The signature algorithm 

-dname A distinguished name 

-validity The validity period for the certificate, in days 

-keypass The password for the private key entry 

 
 
-export  

Export (save) a certificate to a file. Use the -alias option to specify the entry and the -file 
option to specify an output file. 

-printcert  

Print information about a certificate contained in a file. Simply specify the filename using -
file. This command does not use or modify any keystore data. 

-keyclone  

Copy a private key keystore entry. It accepts the options listed in Table 5.3. 

Table 5.3, Key Cloning Options 

Option Description 

-alias The original entry's alias 

-dest The alias for the new (copied) entry 

-keypass The password for the original entry 

-new The password for the new entry 

 
 
-storepasswd  

Change the password on a keystore. As with all other commands, the original keystore 
password is specified using -storepass. The new keystore password is specified using the -
new option. 

-keypasswd  

Change the password on a private key entry in a keystore. It uses the options listed in Table 
5.4. 
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Table 5.4, Key Password Options 

Option Description 

-alias The entry's alias 

-keypass The original key password 

-new The new password 

 
 
-delete  

Remove an entry from a keystore. Specify the entry using the -alias option. 

-help  

This command option prints a list of all of keytool's options. 

5.6.2.7 Changing the default keystore class 

By default, keytool uses sun.security.tools.JavaKeyStore to do its work. If you write your own 
KeyStore implementation, you can still use keytool to manage your keys and certificates. You'll need 
to change a line in the java.security file, found in the lib/security directory underneath the JDK 
installation directory. The line reads as follows: 

keystore=sun.security.tools.JavaKeyStore 

If your KeyStore implementation is oreilly.jonathan.security.SuperDuperKeyStore, for 
example, you would need to change the line as follows:  

 
keystore=oreilly.jonathan.security.SuperDuperKeyStore 
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Chapter 6. Authentication 
The first challenge of building a secure application is authentication . Let's look at some examples of 
authentication from everyday life: 

• At an automated bank machine, you identify yourself using your bank card. You authenticate 
yourself using a personal identification number (PIN). The PIN is a shared secret, something 
that both you and the bank know. Presumably, you and the bank are the only ones who know 
this number. 

• When you use a credit card, you identify yourself with the card. You authenticate yourself with 
your signature. Most store clerks never check the signature; in this situation, possession of the 
card is authentication enough. This is true when you order something over the telephone, as 
well; simply knowing the credit card number is proof of your identity. 

• When you rent a movie at a video store, you prove your identity with a card or by saying your 
telephone number. 

Authentication is tremendously important in computer applications. The program or person you 
communicate with may be in the next room or on another continent; you have none of the usual visual 
or aural clues that are helpful in everyday transactions. Public key cryptography offers some powerful 
tools for proving identity. 

In this chapter, I'll describe three cryptographic concepts that are useful for authentication: 

• Message digests produce a small "fingerprint" of a larger set of data. 

• Digital signatures can be used to prove the integrity of data. 

• Certificates are used as cryptographically safe containers for public keys. 

A common feature of applications, especially custom-developed "enterprise" applications, is a login 
window. Users have to authenticate themselves to the application before they use it. In this chapter, 
we'll examine several ways to implement this with cryptography.[1] In the next section, for instance, I'll 
show two ways to use a message digest to avoid transmitting a password in cleartext from a client to a 
server. Later on, we'll use digital signatures instead of passwords. 

[1] These methods are based on the authentication procedures outlined in the X.509 standard, published by the 
International Telecommunications Union (ITU). Although X.509 is best known for its certificate definition, the 
document concerns the general problem of authentication. For more information, you can download the 
document from the ITU at http://www.itu.ch/. 

6.1 Message Digests 

As you saw in Chapter 2,a message digest takes an arbitrary amount of input data and produces a 
short, digested version of the data. The Java Cryptography Architecture (JCA) makes it very easy to 
use message digests. The java .security.MessageDigest class encapsulates a cryptographic 
message digest. 

6.1.1 Getting 

To obtain a MessageDigest for a particular algorithm use one of its getInstance() factory methods: 

public static MessageDigest getInstance(String algorithm) throws NoSuchAlgorithmException  

This method returns a MessageDigest for the given algorithm. The first provider supporting 
the given algorithm is used. 

public static MessageDigest getInstance(String algorithm, String provider) throws 
NoSuchAlgorithmException, NoSuchProviderException  

This method returns a MessageDigest for the given algorithm, using the given provider. 

http://www.itu.ch/
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6.1.2 Feeding 

To feed data into the MessageDigest, use one of the update() methods: 

public void update(byte input)  

This method adds the specified byte to the message digest's input data. 

public void update(byte[] input)  

Use this method to add the entire input array to the message digest's input data. 

public void update(byte[] input, int offset, int len)  

This method adds len bytes of the given array, starting at offset, to the message digest's 
input data. 

You can call the update() methods as many times as you want before calculating the digest value.  

6.1.3 Digesting 

To find out the digest value, use one of the digest() methods: 

public byte[] digest()  

The value of the message digest is returned as a byte array. 

public byte[] digest(byte[] input)  

This method is provided for convenience. It is equivalent to calling update(input), followed 
by digest(). 

If you use a MessageDigest to calculate a digest value for one set of input data, you can reuse the 
MessageDigest for a second set of data by clearing its internal state first. 

public void reset()  

This method clears the internal state of the MessageDigest. It can then be used to calculate a 
new digest value for an entirely new set of input data. 

6.1.4 One, Two, Three! 

Thus, you can calculate a message digest value for any input data with just a few lines of code: 

// Define byte[] inputData first. 
MessageDigest md = MessageDigest.getInstance("SHA"); 
md.update(inputData); 
byte[] digest = md.digest(); 

Message digests are one of the building blocks of digital signatures. Message digests alone, however, 
can be useful, as you'll see in the following sections. 

6.1.5 Digest Streams 

The java.security package comes with two classes that make it easy to calculate message digests on 
stream data. These classes are DigestInputStream and DigestOutputStream, descendants of the 
FilterInputStream and FilterOutputStream classes in java.io. 

Let's apply DigestInputStream to the Masher class from Chapter 1. In that class, we read a file and 
calculated its message digest value as follows: 

    // Obtain a message digest object. 
    MessageDigest md = MessageDigest.getInstance("MD5"); 
 
    // Calculate the digest for the given file. 
    FileInputStream in = new FileInputStream(args[0]); 
    byte[] buffer = new byte[8192]; 
    int length; 
    while ((length = in.read(buffer)) != -1) 
        md.update(buffer, 0, length); 
    byte[] raw = md.digest(); 
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Now let's wrap a DigestInputStream around the FileInputStream, as follows. As we read data from 
the file, the MessageDigest will automatically be updated. All we need to do is read the entire file. 

    // Obtain a message digest object. 
    MessageDigest md = MessageDigest.getInstance("MD5"); 
 
    // Calculate the digest for the given file. 
    DigestInputStream in = new DigestInputStream( 
        new FileInputStream(args[0]), md); 
    byte[] buffer = new byte[8192]; 
    while (in.read(buffer) != -1) 
      ; 
    byte[] raw = md.digest(); 

DigestOutputStream works the same way; all bytes written to the stream are automatically passed to 
the MessageDigest.  

6.1.6 Protected Password Login 

A basic problem in client/server applications is that the server wants to know who its clients are. In a 
password-based scheme, the client prompts the user for his or her name and password. The client 
relays this information to the server. The server checks the name and password and either allows the 
user into the system or denies access. The password is a shared secret because both the user and the 
server must know it. The obvious solution is to send the user's name and password directly to the 
server. Most computer networks, however, are highly susceptible to eavesdropping, so this is not a 
very secure solution. 

To avoid passing a cleartext password from client to server, you can send a message digest of the 
password instead. The server can create a message digest of its copy of the password. If the two 
message digests are equal, then the client is authenticated. This simple procedure, however, is 
vulnerable to a replay attack. A malicious user could listen to the digested password and replay it later 
to gain illicit access to the server. To avoid this problem, some session-specific information is added to 
the message digest. In particular, the client generates a random number and a timestamp and includes 
them in the digest. These values must also be sent, in the clear, to the server, so that the server can use 
them to calculate a matching digest value. The server must be programmed to receive the extra 
information and include it in its message digest calculations. Figure 6.1 shows how this works on the 
client side. 

Figure 6.1. Protecting a password 

 
The server uses the given name to look up the password in a private database. Then it uses the given 
name, random number, timestamp, and the password it just retrieved to calculate a message digest. If 
this digest value matches the digest sent by the client, the client has been authenticated. 

The following program shows the procedure from the client's point of view: 

import java.io.*; 
import java.net.*; 
import java.security.*; 
import java.util.Date; 
 
import Protection; 
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public class ProtectedClient { 
  public void sendAuthentication(String user, String password, 
      OutputStream outStream) throws IOException, NoSuchAlgorithmException { 
    DataOutputStream out = new DataOutputStream(outStream); 
    long t1 = (new Date()).getTime(); 
    double q1 = Math.random(); 
    byte[] protected1 = Protection.makeDigest(user, password, t1, q1); 
 
    out.writeUTF(user); 
    out.writeLong(t1); 
    out.writeDouble(q1); 
    out.writeInt(protected1.length); 
    out.write(protected1); 
    out.flush(); 
  } 
  public static void main(String[] args) throws Exception { 
    String host = args[0]; 
    int port = 7999; 
    String user = "Jonathan"; 
    String password = "buendia"; 
    Socket s = new Socket(host, port); 
 
    ProtectedClient client = new ProtectedClient(); 
    client.sendAuthentication(user, password, s.getOutputStream()); 
 
    s.close(); 
  } 
} 

The bulk of the algorithm is in the SendAuthentication() method, in these lines: 

    out.writeUTF(user); 
    out.writeLong(t1); 
    out.writeDouble(q1); 
    out.writeInt(protected1.length); 
    out.write(protected1); 

Here we write the user string, timestamp, and random number as cleartext. Instead of writing the 
message digest right away, we first write out its length. This makes it easier for the server to read the 
message digest. Although we could code the server to always read a 20-byte SHA digest, we might 
decide to change algorithms some time in the future. Writing the digest length into the stream means 
we don't have to worry about the length of the digest, whatever algorithm we use. 

Also note that ProtectedClient is not Socket-specific. You could use it to write authentication 
information to a file or an email message. 

Some of the digestion that ProtectedClient performs will be mirrored in the server class. Therefore, 
ProtectedClient's sendAuthentication() method uses a static utility method, makeDigest(), that 
is defined in the Protection class. This class is shown below: 

import java.io.*; 
import java.security.*; 
 
public class Protection { 
  public static byte[] makeDigest(String user, String password, 
      long t1, double q1) throws NoSuchAlgorithmException { 
    MessageDigest md = MessageDigest.getInstance("SHA"); 
    md.update(user.getBytes()); 
    md.update(password.getBytes()); 
    md.update(makeBytes(t1, q1)); 
    return md.digest(); 
  } 
 
  public static byte[] makeBytes(long t, double q) { 
    try { 
      ByteArrayOutputStream byteOut = new ByteArrayOutputStream(); 
      DataOutputStream dataOut = new DataOutputStream(byteOut); 
      dataOut.writeLong(t); 
      dataOut.writeDouble(q); 
      return byteOut.toByteArray(); 
    } 
    catch (IOException e) { 
      return new byte[0]; 
    } 
  } 
} 
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Protection defines two static methods. The makeDigest() method creates a message digest from its 
input data. It uses a helper method, makeBytes(), whose purpose is to convert a long and a double 
into an array of bytes. 

On the server side, the process is similar. The ProtectedServer class has a method, 
lookupPassword() , that returns the password of a supplied user . In our implementation, it is 
hardcoded to return one password. In a real application, this method would probably connect to a 
database or a password file to find the user's password. 

import java.io.*; 
import java.net.*; 
import java.security.*; 
 
import Protection; 
 
public class ProtectedServer { 
  public boolean authenticate(InputStream inStream) 
      throws IOException, NoSuchAlgorithmException { 
    DataInputStream in = new DataInputStream(inStream); 
 
    String user = in.readUTF(); 
    long t1 = in.readLong(); 
    double q1 = in.readDouble(); 
    int length = in.readInt(); 
    byte[] protected1 = new byte[length]; 
    in.readFully(protected1); 
 
    String password = lookupPassword(user); 
    byte[] local = Protection.makeDigest(user, password, t1, q1); 
    return MessageDigest.isEqual(protected1, local); 
  } 
 
  protected String lookupPassword(String user) { return "buendia"; } 
 
  public static void main(String[] args) throws Exception { 
    int port = 7999; 
    ServerSocket s = new ServerSocket(port); 
    Socket client = s.accept(); 
 
    ProtectedServer server = new ProtectedServer(); 
    if (server.authenticate(client.getInputStream())) 
      System.out.println("Client logged in."); 
    else 
      System.out.println("Client failed to log in."); 
 
    s.close(); 
  } 
} 

To test the protected password login, first start up the server: 

C:\ java ProtectedServer 

Then run the client, pointing it to the machine where the server is running. I run both these programs 
on the same machine, so I type this in a different command-line window: 

C:\ java ProtectedClient localhost 

The server will print out a message indicating whether the client logged in. Then both programs exit.  

6.1.7 Double-Strength Password Login 

There is a stronger method for protecting password information using message digests. It involves an 
additional timestamp and random number, as shown in Figure 6.2. 

First, a digest is computed, just as in the previous example. Then, the digest value, another random 
number, and another timestamp are fed into a second digest. Then the server is sent the second digest 
value, along with the timestamps and random numbers. 
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Figure 6.2. A doubly protected password 

 
Why is this better than the simpler scheme we outlined earlier? To understand why, think about how 
you might try to break the protected password scheme. Recall that a message digest is a one-way 
function; ideally, this means that it's impossible to figure out what input produced a given digest 
value.[2] Thus, your best bet is to launch a dictionary attack. This means that you try passwords, one at 
a time, running them through the simple protection algorithm just described and attempting to log in 
each time. In this process, it's important to consider how much time it takes to test a single password. 
In the double-strength protection scheme, two digest values must be computed instead of just one, 
which should double the time required for a dictionary attack. 

[2] In practice, it just takes a very, very long time to figure out what input produced a given digest value. 

We can implement the double protection scheme with a few minimal changes to the 
ProtectedClient and ProtectedServer classes. First, ProtectedClient's sendAuthentication() 
method needs some additional logic. The new lines are shown in bold. 

  public void sendAuthentication(String user, String password, 
      OutputStream outStream) throws IOException, NoSuchAlgorithmException { 
    DataOutputStream out = new DataOutputStream(outStream); 
    long t1 = (new Date()).getTime(); 
    double q1 = Math.random(); 
    byte[] protected1 = Protection.makeDigest(user, password, t1, q1); 
    long t2 = (new Date()).getTime(); 
    double q2 = Math.random(); 
    byte[] protected2 = Protection.makeDigest(protected1, t2, q2); 
 
    out.writeUTF(user); 
    out.writeLong(t1); 
    out.writeDouble(q1); 
    out.writeLong(t2); 
    out.writeDouble(q2); 
    out.writeInt(protected2.length); 
    out.write(protected2); 
    out.flush(); 
  } 

You probably noticed that there's a new helper method in the Protection class. It takes a message 
digest value (an array of bytes), a timestamp, and a random number and generates a new digest value. 
This new static method in the Protection class is shown next: 

  public static byte[] makeDigest(byte[] mush, long t2, double q2) 
      throws NoSuchAlgorithmException { 
    MessageDigest md = MessageDigest.getInstance("SHA"); 
    md.update(mush); 
    md.update(makeBytes(t2, q2)); 
    return md.digest(); 
  } 

Finally, the server needs to be updated to accept the additional protection information. 
ProtectedServer's modified authenticate() method is shown here, with the new lines indicated in 
bold: 

  public boolean authenticate(InputStream inStream) 
      throws IOException, NoSuchAlgorithmException { 
    DataInputStream in = new DataInputStream(inStream); 
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    String user = in.readUTF(); 
    long t1 = in.readLong(); 
    double q1 = in.readDouble(); 
    long t2 = in.readLong(); 
    double q2 = in.readDouble(); 
    int length = in.readInt(); 
    byte[] protected2 = new byte[length]; 
    in.readFully(protected2); 
 
    String password = lookupPassword(user); 
    byte[] local1 = Protection.makeDigest(user, password, t1, q1); 
    byte[] local2 = Protection.makeDigest(local1, t2, q2); 
    return MessageDigest.isEqual(protected2, local2); 
  } 

Neither the regular or double-strength login methods described here prevent a dictionary attack on 
the password. For a method that does prevent a dictionary attack, see http://srp.stanford.edu/srp/.  

6.2 MACs 

A message authentication code (MAC) is basically a keyed message digest. Like a message digest, a 
MAC takes an arbitrary amount of input data and creates a short digest value. Unlike a message 
digest, a MAC uses a key to create the digest value. This makes it useful for protecting the integrity of 
data that is sent over an insecure network. The javax.crypto.Mac class encapsulates a MAC. 

6.2.1 Setting Up 

To create a Mac , use one of its getInstance() methods: 

public static final Mac getInstance(String algorithm) throws NoSuchAlgorithmException  

This method returns a new Mac for the given algorithm. 

public static final Mac getInstance(String algorithm, String provider) throws 
NoSuchAlgorithmException, NoSuchProviderException  

This method returns a new Mac for the given algorithm using the supplied provider. 

Once you have obtained the Mac, you need to initialize it with a key. You can also use algorithm-
specific initialization information, if you wish. 

public final void init(Key key) throws InvalidKeyException  

Use this method to initialize the Macwith the supplied key. An exception is thrown if the key 
cannot be used. 

public final void init(Key key, AlgorithmParameterSpec params) throws InvalidKeyException, 
InvalidAlgorithmParameterException  

This method initializes the Mac with the supplied key and algorithm-specific parameters. 

6.2.2 Feeding 

A Mac has several update() methods for adding data. These are just like the update() methods in 
MessageDigest: 

public final void update(byte input) throws IllegalStateException  

This method adds the given byte to the Mac's input data. If the Mac has not been initialized, an 
exception is thrown. 

public final void update(byte[] input) throws IllegalStateException  

Use this method to add the entire input array to the Mac. 

public final void update(byte[] input, int offset, int len) throws IllegalStateException  

This method adds len bytes of the given array, starting at offset, to the Mac. 

http://srp.stanford.edu/srp/
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6.2.3 Calculating the Code 

To actually calculate the MAC value, use one of the doFinal() methods: 

public final byte[] doFinal() throws IllegalStateException  

This method returns the MAC value and resets the state of the Mac. You can calculate a fresh 
MAC value using the same key by calling update() with new data. 

public final void doFinal(byte[] output, int outOffset) throws IllegalStateException, 
ShortBufferException  

This method places the MAC value into the given array, starting at outOffset, and resets the 
state of the Mac. 

public final byte[] doFinal(byte[] input) throws IllegalStateException  

This method adds the entire input array to this Mac. Then the MAC value is calculated and 
returned. The internal state of the Mac is reset. 

To clear the results of previous calls to update() without calculating the MAC value, use the reset() 
method: 

public final void reset()  

This method clears the internal state of the Mac. If you wish to use a different key to calculate 
a MAC value, you can reinitialize the Mac using init(). 

6.2.4 For Instance 

The following example shows how to create a MAC key and calculate a MAC value: 

SecureRandom sr = new SecureRandom(); 
byte[] keyBytes = new byte[20]; 
sr.nextBytes(keyBytes); 
SecretKey key = new SecretKeySpec(keyBytes, "HmacSHA1"); 
Mac m = Mac.getInstance("HmacSHA1"); 
m.init(key); 
 
m.update(inputData); 
 
byte[] mac = m.doFinal(); 

6.3 Signatures 

A signature provides two security services, authentication and integrity. A signature gives you 
assurance that a message has not been tampered with and that it originated from a certain person. As 
you'll recall from Chapter 2, a signature is a message digest that is encrypted with the signer's private 
key. Only the signer's public key can decrypt the signature, which provides authentication. If the 
message digest of the message matches the decrypted message digest from the signature, then 
integrity is also assured. 

Signatures do not provide confidentiality. A signature accompanies a plaintext message. Anyone can 
intercept and read the message. Signatures are useful for distributing software and documentation 
because they foil forgery. 

The Java Security API provides a class, java.security.Signature, that represents cryptographic 
signatures. This class operates in two distinct modes, depending on whether you wish to generate a 
signature or verify a signature. 

Like the other cryptography classes, Signature has two factory methods: 

public static Signature getInstance(String algorithm) throws NoSuchAlgorithmException  

This method returns a Signaturefor the given algorithm. The first provider supporting the 
given algorithm is used. 

public static Signature getInstance(String algorithm, String provider) throws 
NoSuchAlgorithmException, NoSuchProviderException  

This method returns a Signature for the given algorithm, using the given provider. 
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One of two methods initializes the Signature: 

public final void initSign(PrivateKey privateKey) throws InvalidKeyException  

If you want to generate a signature, use this method to initialize the Signature with the given 
private key. 

public final void initVerify(PublicKey publicKey) throws InvalidKeyException  

To verify a signature, call this method with the public key that matches the private key that 
was used to generate the signature. 

If you want to set algorithm-specific parameters in the Signature object, you can pass an 
AlgorithmParameterSpec to setParameter(). 

public final void setParameter(AlgorithmParameterSpec params) throws 
InvalidAlgorithmPararmeterException  

You can pass algorithm-specific parameters to a Signature using this object. If the 
Signature does not recognize the AlgorithmParameterSpec object, an exception is thrown. 

You can add data to a Signature the same way as for a message digest, using the update() methods. 
A SignatureException is thrown if the Signature has not been initialized. 

public final void update(byte input) throws SignatureException  

You can add a single byte to the Signature's input data using this method. 

public final void update(byte[] input) throws SignatureException  

This method adds the given array of bytes to the Signature's input data. 

public final void update(byte[] input, int offset, int len) throws SignatureException  

This method adds len bytes from the given array, starting at offset, to the Signature's input 
data.  

6.3.1 Generating a Signature 

Generating a signature is a lot like generating a message digest value. The sign() method returns the 
signature itself: 

public final byte[] sign() throws SignatureException  

This method calculates a signature, based on the input data as supplied in calls to update(). 
A SignatureException is thrown if the Signatureis not properly initialized. 

To generate a signature, you will need the signer's private key and the message that you wish to sign. 
The procedure is straightforward: 

1. Obtain a Signature object using the getInstance() factory method. You'll need to specify an 
algorithm. A signature actually uses two algorithms - one to calculate a message digest and 
one to encrypt the message digest. The SUN provider shipped with the JDK 1.1 supports DSA 
encryption of an SHA-1 message digest. This is simply referred to as DSA.  

2. Initialize the Signature with the signer's private key using initSign(). 

3. Use the update() method to add the data of the message into the signature. You can call 
update() as many times as you would like. Three different overloads allow you to update the 
signature with byte data. 

4. Calculate the signature using the sign() method. This method returns an array of bytes that 
are the signature itself. It's up to you to store the signature somewhere.  
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6.3.2 Verifying a Signature 

You can use Signature's verify() method to verify a signature: 

public final boolean verify(byte[] signature) throws SignatureException  

This method verifies that the supplied byte array, signature, matches the input data that has 
been supplied using update(). If the signature verifies, true is returned. If the Signature is 
not properly initialized, a SignatureException is thrown. 

Verifying a signature is similar to generating a signature. In fact, Steps 1 and 3 are identical. It's 
assumed that you already have a signature value. The process here verifies that the message you've 
received produces the same signature: 

1. Obtain a Signature using the getInstance() factory method. 

2. Initialize the Signature with the signer's public key using initVerify(). 

3. Use update() to add message data into the signature. 

4. Check if your signatures match using the verify() method. This method accepts an array of 
bytes that are the signature to be verified. It returns a boolean value that is true if the 
signatures match and false otherwise. 

6.3.3 Hancock 

Let's examine a complete program, called Hancock, that generates and verifies signatures. We'll use a 
file for the message input, and we'll pull keys out of a KeyStore. (You can manipulate keystores with 
the keytool utility, described in Chapter 5. To run this example, you'll have to have created a keystore 
with at least one key pair.) Hancock is a command-line utility that accepts parameters as follows: 

java Hancock -s|-v keystore storepass alias messagefile signaturefile 

The -s option is used for signing. The private key of the given alias is used to create a signature from 
the data contained in messagefile. The resulting signature is stored in signaturefile. The keystore 
parameter is the filename of a keystore, and storepass is the password needed to access the keystore. 

The -v option tells Hancock to verify a signature. The signature is assumed to be in signaturefile. 
Hancock verifies that the signature is from the given alias for the data contained in messagefile. 
Again, keystore is a keystore file, and storepass is used to access the keystore. 

Let's begin by checking our command-line arguments: 

import java.io.*; 
import java.security.*; 
 
public class Hancock { 
  public static void main(String[] args) throws Exception { 
    if (args.length != 6) { 
      System.out.println( 
          "Usage: Hancock -s|-v keystore storepass alias " + 
          "messagefile signaturefile"); 
      return; 
    } 
     
    String options = args[0]; 
    String keystorefile = args[1]; 
    String storepass = args[2]; 
    String alias = args[3]; 
    String messagefile = args[4]; 
    String signaturefile = args[5]; 

Our first step, as you'll recall, is the same for signing and verifying: We need to get a Signature 
object. We use DSA because it's supplied with the Sun provider: 

Signature signature = Signature.getInstance("DSA"); 

Next, the Signature needs to be initialized with either the public key or the private key of the named 
alias. In either case, we need a reference to the keystore, which we obtain as follows: 

    KeyStore keystore = KeyStore.getInstance(); 
    keystore.load(new FileInputStream(keystorefile), storepass); 



Java Cryptography 

 page 80

To sign, we initialize the Signature with a private key. The password for the private key is assumed to 
be the same as the keystore password. To verify, we initialize the Signature with a public key. 

    if (options.indexOf("s") != -1) 
      signature.initSign(keystore.getPrivateKey(alias, storepass)); 
    else 
      signature.initVerify(keystore.getCertificate(alias).getPublicKey()); 

The next step is to update the signature with the given message. This step is the same whether we are 
signing or verifying. We open the message file and read it in 8K chunks. The signature is updated with 
every byte read from the message file. 

    FileInputStream in = new FileInputStream(messagefile); 
    byte[] buffer = new byte[8192]; 
    int length; 
    while ((length = in.read(buffer)) != -1) 
      signature.update(buffer, 0, length); 
    in.close(); 

Finally, we're ready to sign the message or verify a signature. If we're signing, we simply generate a 
signature and store it in a file. 

    if (options.indexOf("s") != -1) { 
      FileOutputStream out = new FileOutputStream(signaturefile); 
      byte[] raw = signature.sign(); 
      out.write(raw); 
      out.close(); 
    } 

Otherwise, we are verifying a signature. All we need to do is read in the signature and check if it 
verifies. We'll print out a message to the user that tells if the signature verified. 

    else { 
      FileInputStream sigIn = new FileInputStream(signaturefile); 
      byte[] raw = new byte[sigIn.available()]; 
      sigIn.read(raw); 
      sigIn.close(); 
      if (signature.verify(raw)) 
        System.out.println("The signature is good."); 
      else 
        System.out.println("The signature is bad."); 
    } 
  } 
} 

You can use Hancock to sign any file with any private key that's in a keystore. A friend who has your 
public key can use Hancock to verify a file he or she has downloaded from you.  

6.3.4 Login, Again 

Passwords are a simple solution to authentication, but they are not considered very secure. People 
choose easy-to-guess passwords, or they write down passwords in obvious places. A sly malcontent, 
pretending to be a system administrator, can usually convince a user to tell his or her password. 

If you want a stronger form of authentication, and you are willing to pay the price in complexity, then 
you should use a signature-based authentication scheme. 

The basic procedure is very similar to the password-based schemes examined earlier, in the section on 
message digests. The client generates a timestamp and a random number. This time, the client creates 
a signature of this data and sends it to the server. The server can verify the signature with the client's 
public key. 

How does the client access your private key, to generate a signature? In a real application, you would 
probably point the client to a disk file that contained your key (preferably on removable media, like a 
floppy disk or a smart card). In this example, we'll just pull a private key out of a keystore. 

The hard part is in creating and maintaining the public key database. The server needs to have a 
public key for every possible person who will log in. Furthermore, the server needs to obtain these 
public keys in a secure way. Certificates solve this problem; I'll discuss them a bit later. 
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We'll look at the simple case, with a pair of programs called StrongClient and StrongServer. 
StrongClient creates a timestamp and a random number and sends them along with the user's name 
and a signature to the server. The length of the signature is sent before the signature itself, just as it 
was with the message digest login examples. 

The main() method attempts to use a private key extracted from a keystore. The keystore location, 
password, alias, and private key password are all command-line parameters. For this to work, you'll 
need to have created a pair of DSA keys in a keystore somewhere. See Chapter 5 if you're not sure how 
to do this. 

import java.io.*; 
import java.net.*; 
import java.security.*; 
import java.util.Date; 
 
import Protection; 
 
public class StrongClient { 
  public void sendAuthentication(String user, PrivateKey key, 
      OutputStream outStream) throws IOException, NoSuchAlgorithmException, 
      InvalidKeyException, SignatureException { 
    DataOutputStream out = new DataOutputStream(outStream); 
    long t = (new Date()).getTime(); 
    double q = Math.random(); 
 
    Signature s = Signature.getInstance("DSA"); 
    s.initSign(key); 
    s.update(Protection.makeBytes(t, q)); 
    byte[] signature = s.sign(); 
 
    out.writeUTF(user); 
    out.writeLong(t); 
    out.writeDouble(q); 
    out.writeInt(signature.length); 
    out.write(signature); 
    out.flush(); 
  } 
 
  public static void main(String[] args) throws Exception { 
    if (args.length != 5) { 
      System.out.println( 
          "Usage: StrongClient host keystore storepass alias keypass"); 
      return; 
    } 
     
    String host = args[0]; 
    String keystorefile = args[1]; 
    String storepass = args[2]; 
    String alias = args[3]; 
    String keypass = args[4]; 
     
    int port = 7999; 
    Socket s = new Socket(host, port); 
 
    StrongClient client = new StrongClient(); 
    KeyStore keystore = KeyStore.getInstance(); 
    keystore.load(new FileInputStream(keystorefile), storepass); 
    PrivateKey key = keystore.getPrivateKey(alias, keypass); 
    client.sendAuthentication(alias, key, s.getOutputStream()); 
 
    s.close(); 
  } 
} 

The server version of this program simply reads the information from the stream and verifies the 
given signature, using a public key from the keystore named in the command line. Note that the client 
sends the alias name to the server. This implies that the correct keys must be referenced by the same 
alias in both the keystore that the client uses and the keystore that the server uses. 

import java.io.*; 
import java.net.*; 
import java.security.*; 
 
import Protection; 
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public class StrongServer { 
  protected KeyStore mKeyStore; 
   
  public StrongServer(KeyStore keystore) { mKeyStore = keystore; } 
   
  public boolean authenticate(InputStream inStream) 
      throws IOException, NoSuchAlgorithmException, 
      InvalidKeyException, SignatureException { 
    DataInputStream in = new DataInputStream(inStream); 
 
    String user = in.readUTF(); 
    long t = in.readLong(); 
    double q = in.readDouble(); 
    int length = in.readInt(); 
    byte[] signature = new byte[length]; 
    in.readFully(signature); 
 
    Signature s = Signature.getInstance("DSA"); 
    s.initVerify(mKeyStore.getCertificate(user).getPublicKey()); 
    s.update(Protection.makeBytes(t, q)); 
    return s.verify(signature); 
  } 
 
  public static void main(String[] args) throws Exception { 
    if (args.length != 2) { 
      System.out.println("Usage: StrongServer keystore storepass"); 
      return; 
    } 
     
    String keystorefile = args[0]; 
    String storepass = args[1]; 
     
    int port = 7999; 
    ServerSocket s = new ServerSocket(port); 
    Socket client = s.accept(); 
 
    KeyStore keystore = KeyStore.getInstance(); 
    keystore.load(new FileInputStream(keystorefile), storepass); 
    StrongServer server = new StrongServer(keystore); 
    if (server.authenticate(client.getInputStream())) 
      System.out.println("Client logged in."); 
    else 
      System.out.println("Client failed to log in."); 
 
    s.close(); 
  } 
} 

Run the server by pointing it to the keystore you wish to use, as follows: 

C:\ java StrongServer c:\windows\.keystore buendia 

Then run the client, telling it the server's IP address, the keystore location, the alias, and the private 
key password. Because I'm running the server and client on the same machine, I use localhost for the 
server's address: 

C:\ java StrongClient localhost c:\windows\.keystore buendia Jonathan 
  buendia 

The server prints a message indicating if the client logged in. Then the server and client exit.  

6.3.5 SignedObject 

JDK 1.2 offers a utility class, java.security.SignedObject , that contains any Serializable object 
and a matching signature. You can construct a SignedObject with a Serializable object, a private 
key, and a Signature: 

public SignedObject(Serializable object, PrivateKey signingKey, Signature signingEngine) throws 
IOException, InvalidKeyException, SignatureException  

This constructor creates a SignedObject that encapsulates the given Serializable object. 
The object is serialized and stored internally. The serialized object is signed using the supplied 
Signature and private key. 
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You can verify the signature on a SignedObject with the verify() method: 

public final boolean verify(PublicKey verificationKey, Signature verificationEngine) throws 
InvalidKeyException, SignatureException  

This method verifies that the SignedObject's internal signature matches its contained object. 
It uses the supplied public key and Signature to perform the verification. As before, the 
Signature does not need to be initialized. This method returns true if the SignedObject's 
signature matches its contained object; that is, the contained object's integrity is verified. 

You can retrieve the SignedObject's contained object using the getObject() method: 

public Object getObject() throws IOException, ClassNotFoundException  

This method returns the object contained in this SignedObject. The object is stored 
internally as a byte array; this method deserializes the object and returns it. To be assured of 
the object's integrity, you should call verify() before calling this method. 

One possible application of SignedObject is in the last example. We might write a simple class, 
AuthorizationToken, that contained the user's name, the timestamp, and the random value. This 
object, in turn, could be placed inside a SignedObject that could be passed from client to server. 

6.4 Certificates 

To verify a signature, you need the signer's public key. So how are public keys distributed securely? 
You could simply download the key from a server somewhere, but how would you know you got the 
right file and not a forgery? Even if you get a valid key, how do you know that it belongs to a particular 
person? 

Certificates answer these questions. A certificate is a statement, signed by one person, that the public 
key of another person has a particular value. In some ways, it's like a driver's license. The license is a 
document issued by your state government that matches your face to your name, address, and date of 
birth. When you buy alcohol, tobacco, or dirty magazines, you can use your license to prove your 
identity (and your age). 

Note that the license only has value because you and your local shopkeepers trust the authority of the 
state government. Digital certificates have the same property: You need to trust the person who issued 
the certificate (who is known as a Certificate Authority, or CA). 

In cryptographic terminology, a certificate associates an identity with a public key. The identity is 
called the subject . The identity that signs the certificate is the signer. The certificate contains 
information about the subject and the subject's public key, plus information about the signer. The 
whole thing is cryptographically signed, and the signature becomes part of the certificate, too. Because 
the certificate is signed, it can be freely distributed over insecure channels. 

At a basic level, a certificate contains these elements: 

• Information about the subject 

• The subject's public key 

• Information about the issuer 

• The issuer's signature of the above information 

Sun recognized that certificate support was anemic in JDK 1.1. Things are improved in JDK 1.2. You 
can now import X.509v3 certificates and verify them. You still can't generate a certificate using the 
public API. 

In this section, I'll talk about the JDK 1.2 classes that represent certificates and Certificate Revocation 
Lists (CRLs). 
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6.4.1 java.security.cert.Certificate 

JDK 1.1 introduced support for certificates, based around the java.security.Certificate interface. 
In JDK 1.2, this interface is deprecated; we won't be covering it. It is replaced by an abstract class, 
java.security.cert.Certificate. This class is a little simpler than its predecessor, and it includes 
the ability to verify a certificate. Support for X.509 certificates is provided in a separate class, which 
I'll explain in a moment. 

First, of course, java.security.cert.Certificate is a container for a public key: 

public abstract PublicKey getPublicKey()  

This method returns the public key that is contained by this certificate. 

You can get an encoded version of the certificate using getEncoded(). The data returned by this 
method could be written to a file: 

public abstract byte[] getEncoded() throws CertificateEncodingException  

This method returns an encoded representation of the certificate. 

6.4.2 Generating a Certificate 

Oddly enough, there is still no programmatic way to generate a certificate from scratch, even with the 
new classes in JDK 1.2. You can, however, load an X.509 certificate from a file using the 
getInstance() method in the X509Certificate class. I'll talk about this later. 

 

Working with certificates in JDK 1.2 is sometimes difficult because there 
are two things named Certificate. The java.security.Certificate 
interface was introduced in JDK 1.1, but it's now deprecated. The "official" 
certificate class in JDK 1.2 is java.security.cert.Certificate. 
Whenever you see Certificate in source code, make sure you understand 
what it refers to. And be careful if you import both java.security.* and 
java.security.cert.*. 

 

6.4.3 Verifying a Certificate 

To verify the contents of the certificate, use one of the verify() methods: 

public abstract void verify(PublicKey key) throws CertificateException, NoSuchAlgorithmException, 
InvalidKeyException, NoSuchProviderException, SignatureException  

This method uses the supplied public key to verify the certificate's contents. The public key 
should belong to the certificate's issuer (and has nothing to do with the public key contained 
in this certificate). The supplied issuer's public key is used to verify the internal signature that 
protects the integrity of the certificate's data. 

public abstract void verify(PublicKey key, String sigProvider) throws CertificateException, 
NoSuchAlgorithmException, InvalidKeyException, NoSuchProviderException, SignatureException  

This is the same as the previous method, but specifically uses the given provider to supply the 
signing algorithm implementation.  

6.4.4 X.509 

Several standards specify the contents of a certificate. One of the most popular is X.509, published by 
the International Telecommunications Union (ITU). Three versions of this standard have been 
published. Table 6.1 shows the contents of an X.509 certificate. 

Support for X.509 certificates is provided by a subclass of Certificate, 
java.security.cert.X509Certificate. This class is also abstract although it defines a 
getInstance() method that returns a concrete subclass. Most of the methods in this class return the 
fields of an X.509 certificate: getVersion(), getSerialNumber(), getIssuerDN(), and so on. Table 
6.1 shows the X509Certificate methods corresponding to the certificate fields. 
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Table 6.1, X.509 Certificate Contents 

Field Description Method 

Version X.509 v1, v2, or v3 int getVersion() 

Serial number A number unique to the issuer BigInteger getSerialNumber() 

Signature 
algorithm 

Describes the cryptographic algorithm 
used for the signature 

String getSigAlgName() 

Issuer The issuer's name Principal getIssuerDN() 

Validity period 
A range of time when the certificate is 

valid 
Date getNotBefore(), Date 

getNotAfter() 

Subject The subject's name Principal getSubjectDN() 

Subject's public 
key 

The subject's public key 
PublicKey getPublicKey()  
(inherited from Certificate) 

Issuer's unique 
identifier 

A unique identifier representing the 
issuer (versions 2 and 3) 

boolean[] getIssuerUniqueID() 

Subject's unique 
identifier 

A unique identifier representing the 
subject (versions 2 and 3) 

boolean[] getSubjectUniqueID() 

Extensions Additional data (version 3) boolean[] getKeyUsage(), int 
getBasicConstraints() 

Signature A signature of all of the previous fields byte[] getSignature() 

To load an X.509 certificate from a file, you can use getInstance() : 

public static final X509Certificate getInstance(InputStream inStream) throws CertificateException  

This method instantiates a concrete subclass of X509Certificate and initializes it with the 
given input stream. 

public static final X509Certificate getInstance(byte[] certData) throws CertificateException  

This method works as above, except the new certificate is initialized using the supplied byte 
array. 

The way that getInstance() works is a little convoluted. The actual object that is created is 
determined by an entry in the java.security properties file. This file is found in the lib/security 
directory underneath the JDK installation directory. By default, the relevant line looks like this: 

cert.provider.x509=sun.security.x509.X509CertImpl 

Let's say you call getInstance() with an input stream. A sun.security .x509.X509CertImpl will 
be created, using a constructor that accepts the input stream. It's up to the X509CertImpl to read data 
from the input stream to initialize itself. X509CertImpl knows how to construct itself from a DER-
encoded certificate. What is DER? In the X.509 standard, a certificate is specified as a data structure 
using the ASN.1 (Abstract Syntax Notation) language. There are a few different ways that ASN.1 data 
structures can be reduced to a byte stream, and DER (Distinguished Encoding Rules) is one of these 
methods. The net result is that an X509CertImpl can recognize an X.509 certificate if it is DER-
encoded. 
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6.4.5 Spill 

Let's look at an example that uses X509Certificate . We'll write a tool that displays information 
about a certificate contained in a file, just like keytool -printcert. Like keytool, we'll recognize 
certificate files in the format described by RFC 1421. An RFC 1421 certificate representation is simply a 
DER representation, converted to base64, with a header and a footer line. Here is such a file: 

-----BEGIN CERTIFICATE----- 
MIICMTCCAZoCAS0wDQYJKoZIhvcNAQEEBQAwXDELMAkGA1UEBhMCQ1oxETAPBgNV 
BAoTCFBWVCBhLnMuMRAwDgYDVQQDEwdDQS1QVlQxMSgwJgYJKoZIhvcNAQkBFhlj 
YS1vcGVyQHA3MHgwMy5icm4ucHZ0LmN6MB4XDTk3MDgwNDA1MDQ1NloXDTk4MDIw 
MzA1MDQ1NlowgakxCzAJBgNVBAYTAkNaMQowCAYDVQQIEwEyMRkwFwYDVQQHExBD 
ZXNrZSBCdWRlam92aWNlMREwDwYDVQQKEwhQVlQsYS5zLjEMMAoGA1UECxMDVkNV 
MRcwFQYDVQQDEw5MaWJvciBEb3N0YWxlazEfMB0GCSqGSIb3DQEJARYQZG9zdGFs 
ZWtAcHZ0Lm5ldDEYMBYGA1UEDBMPKzQyIDM4IDc3NDcgMzYxMFwwDQYJKoZIhvcN 
AQEBBQADSwAwSAJBAORQnnnaTGhwrWBGK+qdvIGiBGyaPNZfnqXlbtXuSUqRHXhE 
acIYDtMVfK4wdROe6lmdlr3DuMc747/oT7SjO2UCAwEAATANBgkqhkiG9w0BAQQF 
AAOBgQBxfebIQCCxnVtyY/YVfsAct1dbmxrBkeb9Z+xN7i/Fc3XYLig8rag3cfWg 
wDqbnt8LKzvFt+FzlrO1qIm7miYlWNq26rlY3KGpWPNoWGJTkyrqX80/WAhU5B9l 
QOqgL9zXHhE65Qq0Wu/3ryRgyBgebSiFem10RZVavBHjgVcejw== 
-----END CERTIFICATE----- 

Our class performs three tasks: 

1. We need to read the file, strip off the header and footer, and convert the body from a base64 
string to a byte array. The oreilly.jonathan.util.Base64 class is used to perform the 
base64 conversion. This class is presented in Appendix B. 

2. We'll use this byte array (a DER-encoded certificate) to create a new X509Certificate. We 
can then print out some basic information about the certificate. 

3. Finally, we'll calculate certificate fingerprints and print them. 

Spill begins by checking its command-line arguments: 

import java.io.*; 
import java.security.KeyStore; 
import java.security.MessageDigest; 
import java.security.cert.X509Certificate; 
 
import oreilly.jonathan.util.Base64; 
 
public class Spill { 
  public static void main(String[] args) throws Exception { 
    if (args.length != 1) { 
      System.out.println("Usage: Spill file"); 
      return; 
    } 

Next, Spill creates a BufferedReader for reading lines of text from the file. If the first line doesn't 
contain the certificate header, an exception is thrown. Otherwise, subsequent lines are read and 
accumulated as one large base64 string. We stop reading lines when we encounter the footer line. This 
done, we convert the base64 string to a byte array: 

    BufferedReader in = new BufferedReader(new FileReader(args[0])); 
    String begin = in.readLine(); 
    if (begin.equals("-----BEGIN CERTIFICATE-----") == false) 
      throw new IOException("Couldn't find certificate beginning"); 
    String base64 = new String(); 
    boolean trucking = true; 
    while (trucking) { 
      String line = in.readLine(); 
      if (line.startsWith("-----")) trucking = false; 
      else base64 += line; 
    } 
    in.close(); 
    byte[] certificateData = Base64.decode(base64); 

We now have the raw certificate data and can create a new certificate using getInstance() in the 
X509Certificate class: 

X509Certificate c = X509Certificate.getInstance(certificateData); 
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Having obtained an X509Certificate, Spill prints out various bits of information about it. 

    System.out.println("Subject: " + c.getSubjectDN().getName()); 
    System.out.println("Issuer : " + c.getIssuerDN().getName()); 
    System.out.println("Serial number: " + 
        c.getSerialNumber().toString(16)); 
    System.out.println("Valid from " + c.getNotBefore() + 
        " to " + c.getNotAfter()); 

We also want to print out the certificate's fingerprints. It's a little tricky to format the fingerprints 
correctly, so a helper method, doFingerprint(), is used: 

    System.out.println("Fingerprints:"); 
    doFingerprint(certificateData, "MD5"); 
    doFingerprint(certificateData, "SHA"); 
  } 

The doFingerprint() method calculates a fingerprint (message digest value) and prints it out. First, 
it obtains a message digest for the requested algorithm and calculates the digest value: 

  protected static void doFingerprint(byte[] certificateBytes, 
      String algorithm) throws Exception { 
    System.out.print("  " + algorithm + ": "); 
    MessageDigest md = MessageDigest.getInstance(algorithm); 
    md.update(certificateBytes); 
    byte[] digest = md.digest(); 

Now doFingerprint() will print out the digest value as a series of two-digit hexadecimal numbers. 
We loop through the digest value. Each byte is converted to a two-digit hex string. Colons separate the 
hex values. 

    for (int i = 0; i < digest.length; i++) { 
      if (i != 0) System.out.print(":"); 
      int b = digest[i] & 0xff; 
      String hex = Integer.toHexString(b); 
      if (hex.length() == 1) System.out.print("0"); 
      System.out.print(hex); 
    } 
    System.out.println(); 
  } 
} 

Let's take it for a test drive. Let's say you have a certificate in a file named ca1.x509. You would run 
Spill as follows: 

C:\ java Spill ca1.x509 
Subject: T="+42 38 7747 361", OID.1.2.840.113549.1.9.1=dostalek@pvt.net,  
CN=Libor Dostalek, OU=VCU, O="PVT,a.s.", L=Ceske Budejovice, S=2, C=CZ 
Issuer : OID.1.2.840.113549.1.9.1=ca-oper@p70x03.brn.pvt.cz, CN=CA-PVT1,  
O=PVT a.s., C=CZ 
Serial number: 2d 
Valid from Mon Aug 04 01:04:56 EDT 1997 to Tue Feb 03 00:04:56 EST 1998 
Fingerprints: 
  MD5: d9:6f:56:3e:e0:ec:35:70:94:bb:df:05:75:d6:32:0e 
  SHA: db:be:df:e5:ff:ec:f9:53:98:dc:88:dd:6b:ba:cf:2e:2a:68:0c:44 

If you run keytool -printcert on the same file, you'll see the same information: 

C:\ keytool -printcert -file ca1.x509 
Owner: T="+42 38 7747 361", OID.1.2.840.113549.1.9.1=dostalek@pvt.net,  
CN=Libor Dostalek, OU=VCU, O="PVT,a.s.", L=Ceske Budejovice, S=2, C=CZ 
Issuer: OID.1.2.840.113549.1.9.1=ca-oper@p70x03.brn.pvt.cz, CN=CA-PVT1, O=PVT  
a.s., C=CZ 
Serial Number: 2d 
 
Valid from: Mon Aug 04 01:04:56 EDT 1997 until: Tue Feb 03 00:04:56 EST 1998 
 
Certificate Fingerprints: 
 
         MD5:  D9:6F:56:3E:E0:EC:35:70:94:BB:DF:05:75:D6:32:0E 
 
         SHA1: DB:BE:DF:E5:FF:EC:F9:53:98:DC:88:DD:6B:BA:CF:2E:2A:68:0C:44 
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6.4.6 Certificate Revocation Lists 

JDK 1.2 addresses another shortcoming of the JDK 1.1 certificate support: Certificate Revocation Lists 
(CRLs). CRLs answer the question of what happens to certificates when they're lost or stolen. A CRL is 
simply a list of certificates that are no longer valid. (Unfortunately, there aren't yet any standards for 
how CRLs are issued; presumably they're published in some way by the CAs.) JDK 1.2 provides two 
classes that support CRLs. First, java.security.cert.X509CRL represents a CRL as specified in the 
X.509 standard. You can create an X509CRL from a file using getInstance() , just as with 
X509Certificate: 

public static final X509CRL getInstance(InputStream inStream) throws CRLException, 
X509ExtensionException  

This method instantiates a concrete subclass of X509CRL and initializes it with the given input 
stream. 

public static final X509CRL getInstance(byte[] crlData) throws CRLException, 
X509ExtensionException  

This method works like the preceding method except it uses the supplied byte array to 
initialize the X509CRL. 

X509CRL's getInstance() works in much the same way as X509Certificate. The actual subclass of 
X509CRL that is returned by getInstance() is determined, again, by an entry in the java.security file. 
The relevant entry for CRLs is this: 

crl.provider.x509=sun.security.x509.X509CRLImpl 

X509CRL is similar to X509Certificate in many ways. It includes getEncoded() and verify() 
methods that accomplish the same thing as in X509Certificate. It also includes methods that return 
information about the CRL itself, like getIssuerDN() and getSigAlgName() . 

To find out if a particular certificate has been revoked, you can use the isRevoked() method: 

public abstract boolean isRevoked(BigInteger serialNumber)  

This method returns true if the certificate matching the given serial number has been 
revoked. Serial numbers are unique to a Certificate Authority (CA). Each CA issues its own 
CRLs. Thus, this method is used to correlate certificate serial numbers from the same CA. 

If you want more information about a revoked certificate, you can use the getRevokedCertificate() 
and getRevokedCertificates() methods. These return instances of 
java.security.cert.RevokedCertificate , which can be used to check the revocation date: 

public abstract RevokedCertificate getRevokedCertificate(BigInteger serialNumber) throws 
CRLException  

This method returns a RevokedCertificate corresponding to the given serial number. 

public abstract Set getRevokedCertificates() throws CRLException  

This method returns a collection of all the revoked certificates contained in this X509CRL .  
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Chapter 7. Encryption 
Encryption is a tool you can use to protect secrets. You might encrypt files on your hard drive so that 
the loss or theft of your computer would not compromise your data. You might also want to encrypt 
your network communications, especially the ones to your bank, or your doctor, or your friends. 

A cipher encrypts or decrypts data. Ciphers comes in three flavors: 

• Symmetric , or private key , ciphers use a single secret key to encrypt and decrypt data. 
Symmetric keys can be useful in applications like hard-disk file encryption, when the same 
person encrypts and decrypts data. 

• Asymmetric , or public key , ciphers use a pair of keys. One key is public and may be freely 
distributed. The other key is private and should be kept secret. Data encrypted with either key 
can be decrypted using the other key. 

• Hybrid systems use a combination of symmetric and asymmetric ciphers. Asymmetric ciphers 
are much slower than their symmetric counterparts. In a hybrid system, an asymmetric cipher 
is used to exchange a private key (also called a secret key or a session key). The secret key is 
used with a symmetric cipher for data encryption and decryption. 

This list mixes apples and oranges a little bit. Symmetric and asymmetric ciphers are described by 
algorithms. A hybrid system is at a higher level; it's a protocol that uses both public and private key 
algorithms. 

In this chapter, I'll cover the following topics: 

• Stream and block ciphers 

• Padding for block ciphers 

• Cipher modes, or the different ways a block cipher can be used 

• Cipher algorithms 

• The javax.crypto.Cipher class 

• Utility classes based on ciphers 

• Passphrase encryption, in which a key is derived from a passphrase 

• How to write your own cipher implementations 

• Hybrid systems 

Remember, this is the dangerous stuff; to play with ciphers, you'll have to download and install the 
nonexportable Java Cryptography Extension. See Chapter 3, for more details. 

7.1 Streams and Blocks 

Symmetric ciphers come in two varieties. Block ciphers encrypt and decrypt fixed-size blocks of data, 
usually 64 bits long. Stream ciphers operate on a stream of bits or bytes. The distinction is blurry, 
however. A block cipher can be made to work like a stream cipher, using the appropriate mode (CFB). 
I'll talk about this soon. Asymmetric ciphers are block ciphers. 
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Before computers, encryption was accomplished using stream ciphers, which are ciphers that operate 
on one character of a message at a time. The use of computers in cryptography has led to the creation 
of block ciphers, in which a message is broken into blocks. The cipher encrypts or decrypts one block 
at a time. When would you choose a block or stream cipher? It depends on the application. In a 
cryptographically enabled Telnet application, for example, using a block cipher would be awkward. In 
telnet, the server should receive each character that the client types, as it is typed. If you were 
encrypting the data between the client and server with a block cipher, you'd have to wait until the 
client typed enough characters to fill a block. In this case, a stream cipher is better suited to the task. 

Be that as it may, block cipher algorithms are much more prevalent than stream cipher algorithms. If 
you need a stream cipher (as you will in Chapter 10), then use a block cipher in CFB mode. 

7.2 Block Ciphers 

7.2.1 Padding 

The implementation of block ciphers raises an interesting problem: The plaintext you wish to encrypt 
will not always be a multiple of the block size (usually 64 bits). To compensate for the last incomplete 
block, paddingis needed. A padding scheme specifies exactly how the last block of plaintext is filled 
with data before it is encrypted. A corresponding procedure on the decryption side removes the 
padding and restores the plaintext's original length.  

7.2.1.1 PKCS#5 

PKCS#5 is one possible padding scheme. PKCS#5 is a Public-Key Cryptography Standard, a self-
proclaimed standard published by RSA Data Security, Inc. The padding method is straightforward: 
Fill the remainder of the block with bytes containing the number of remaining bytes.[1] For example, in 
a 64-bit block, if there are five leftover plaintext bytes in the block, three bytes with a value of 3 pad 
the block. Data that ends on a block boundary has a whole block of padding added. In a 64-bit block, a 
whole block of padding is eight bytes with a value of 8. This method allows the padding to be 
unambiguously removed after decryption, restoring the original size of the plaintext. Figure 7.1 shows 
some examples of PKCS#5-style padding in 64-bit blocks.[2] 

[1] Strictly speaking, blocks are made of octets, not bytes. In some obscure cases, a byte is not eight bits long. An 
octect is always eight bits. I use the more familiar term byte with the assumption that it's eight bits long. 

[2] PKCS#5 is actually a standard for passphrase-based encryption. Part of the standard specifies this padding 
scheme. You can get PKCS#5 from RSA Data Security, Inc., at http://www.rsa.com/rsalabs/pubs/PKCS/. 

Figure 7.1. PKCS#5 block padding 

 

http://www.rsa.com/rsalabs/pubs/PKCS/
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At first glance, it doesn't seem necessary to add the entire block of padding when the plaintext is a 
multiple of the block size. Consider, however, some plaintext that is a multiple of the block length and 
ends with three bytes with the value 3. Suppose it is encrypted without adding any padding. When the 
corresponding ciphertext is decrypted, it appears to have three bytes of padding. But these are really 
part of the original plaintext! To avoid this ambiguity, padding is always added when encrypting, no 
matter what the original plaintext length. When the ciphertext is decrypted, the padding is always 
removed. 

You can find out the padding scheme of a Cipher using the getPadding() method. In the SunJCE 
provider, the name for PKCS#5 padding is "PKCS5Padding." 

7.2.1.2 Other padding schemes 

There are other padding schemes. You could fill out the remainder of a block with random data or a 
pattern of data. Basically, you just need to have some way to remove the padding when the ciphertext 
is decrypted. This implies that somewhere in the padding, there is some data that describes the length 
of the padding. In PKCS#5, for example, the padding length is distributed throughout the padding 
data.  

7.2.2 Modes 

The mode of a cipher determines how blocks of plaintext are encrypted into blocks of ciphertext, and 
vice versa. You can find out the mode of a Cipher by calling getMode(). The SunJCE provider 
supports ECB , CBC , CFB , OFB , and PCBC modes, which I will describe here. 

7.2.2.1 ECB 

The simplest case is electronic code book (ECB) mode, in which each block of plaintext encrypts to a 
block of ciphertext. ECB mode has the disadvantage that the same plaintext will always encrypt to the 
same ciphertext, if you use the same key. Consider, for example, the SecretWriting program from 
Chapter 1. Using this program, 

Hello, world! 

encrypts to 

1Sk5ElK+QKw4ZItlFen4Hg== 

Using the same key, 

Hello, world!  Mamma mia! 

encrypts to 

1Sk5ElK+QKzJ75LKMLS/zSoVlOn6pfjcEZR7aP3fvpA= 

Note that the first block of the ciphertext is the same.[3] This is a weakness that can be exploited by a 
cryptanalyst. This kind of repetition often occurs in messages: A common salutation, header, or footer 
can all aid cryptanalysis. If your data is more "random looking," like a key or a message digest, then 
ECB may be appropriate. Otherwise, you should consider a different mode.  

[3] The ciphertext is represented in base64, which uses 6 bits per digit. Thus, the first 10 digits make up 60 bits of 
the first 64-bit ciphertext block, and these digits are the same for both ciphertexts. For more on base64, see 
Appendix B. 

7.2.2.2 CBC 

Cipher block chaining (CBC) mode overcomes the weakness of ECB mode. Each block of plaintext is 
combined with the previous block's ciphertext, using XOR; the result is encrypted to form a block of 
ciphertext. Because there is no previous ciphertext block for the first block of plaintext, an 
initialization vector (IV) is used for the first block of plaintext. The IV is usually just random data. The 
decrypting cipher must be initialized with the same IV to correctly decrypt the data. Encryption in 
CBC mode is shown in Figure 7.2. 
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Figure 7.2. Cipher block chaining (CBC) mode 

 
CBC decryption is the reverse of the encryption process. As each block of ciphertext is decrypted, it is 
XORed with the previous ciphertext block. This produces the plaintext. Again, the cipher must be 
initialized with an IV to get the ball rolling. 

In a way, the IV is a kind of key. On the encrypting side, the cipher is initialized using both a key and 
the IV. On the decrypting end, the cipher is initialized with a key and the same IV. The IV must be 
transmitted with the ciphertext to anyone interested in decrypting the ciphertext.  

7.2.2.3 PCBC 

Propagating cipher block chaining (PCBC) mode is a lot like CBC mode. When a plaintext block is 
encrypted, however, it is XORed with both the previous plaintext block and the previous ciphertext 
block. Likewise, decrypted blocks are XORed with the previous plaintext and ciphertext blocks. 

7.2.2.4 CFB 

Cipher feedback (CFB) mode allows a block cipher to act like a stream cipher. Like CBC, it uses an IV, 
but the internal process is more involved. The net result is that a block cipher in CFB mode can 
encrypt pieces of data that are smaller than the block size. In fact, CFB can be used to encrypt any data 
size, from one bit to the block size. Usually, CFB is used to encrypt or decrypt one byte (eight bits) at a 
time, which is called CFB8. 

Figure 7.3 shows how a byte is encrypted using CFB8. 

A plaintext byte, p, is encrypted to a ciphertext byte, c, in three steps: 

1. A buffer as large as the block size of the underlying cipher is encrypted using the block cipher. 
This buffer is filled, initially, with the initialization vector (IV). 

2. The desired number of leftmost bits of the encrypted buffer are XORed with the plaintext. The 
result is the ciphertext output. The remainder of the encrypted buffer is discarded. In CFB8, 
the leftmost byte of the encrypted buffer is XORed with the plaintext byte, producing a 
ciphertext byte. 

3. The original buffer is shifted to the left by the desired number of bits. In CFB8, the buffer is 
shifted one byte to the left. The ciphertext is used to fill in the empty space on the right side of 
the buffer. This buffer will be used again in the next encryption. As this process continues, the 
buffer will become entirely filled with ciphertext. 
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Figure 7.3. Cipher feedback (CFB) mode encrypting eight bits at a time 

 
 
Decryption follows the same process, except for Step 2: 

1. The buffer is encrypted using the block cipher. Even though we are decrypting a ciphertext 
byte, we still use the block cipher to encrypt the buffer. 

2. The leftmost bits of the encrypted buffer are XORed with the ciphertext, producing the 
plaintext output. Again, the remainder of the encrypted buffer is discarded. 

3. The original buffer is shifted left and filled in with the ciphertext. The buffer will be used again 
in the next decryption. 

Why does this work? Let's call the leftmost bits of the encrypted buffer b. Whether you are encrypting 
or decrypting, CFB mode produces the same sequence of b values if you start with the same IV. This is 
because the underlying cipher always encrypts the internal buffer, and the internal buffer is always 
shifted to the left and filled on the right with the ciphertext. This happens regardless of whether the 
CFB mode cipher is encrypting or decrypting. In encryption, the ciphertext is produced by XORing the 
plaintext with the leftmost bits of the encrypted buffer: c = p b. When decrypting, the plaintext is 
calculated from c b. Substituting for c, we get c b = p b b = p. 

As you might have noticed, CFB mode is not particularly efficient. Each time a piece of plaintext is 
encrypted, an entire block is encrypted by the underlying cipher. Likewise, each piece of decrypted 
ciphertext comes at the cost of an entire encrypted block. For a cipher with a block size of 64 bits, 
CFB8 will be about eight times slower than ECB or CBC. As the number of bits encrypted in CFB mode 
approaches the block size of the underlying cipher, the efficiency improves. CFB64 (also called CFB) 
will be just as efficient as CBC for a cipher with a 64-bit block size. 

You can use CFB mode with any symmetric block cipher. Interestingly, you can use CFB mode with an 
asymmetric cipher algorithm, too, but it will behave like a symmetric cipher. To understand why, 
remember that a block cipher in CFB mode always encrypts the internal buffer, regardless of whether 
you are encrypting or decrypting data. The asymmetric cipher will have to be initialized with the same 
key each time, whether you are encrypting or decrypting. This is the behavior of a symmetric cipher.  
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7.2.2.5 OFB 

Output feedback (OFB) mode works just like CFB mode, except in how the internal buffer is updated. 
When the internal buffer is shifted left, the space on the right side is filled with the leftmost bits of the 
encrypted buffer (instead of the ciphertext, which was used in CFB). In theory, OFB can be used with 
any bit size less than or equal to the cipher's block size. However, OFB is weak when the feedback size 
is less than the block size of the underlying cipher. Only use OFB with a feedback size equal to the 
cipher's block size. 

7.2.2.6 Other modes 

There are other cipher modes; for details, see Bruce Schneier's Applied Cryptography. When you use 
a cipher, make sure you understand what mode it's using. The mode affects the cipher's resistance to 
cryptanalysis and its ability to recover from transmission errors. 

For example, in ECB mode, one block of plaintext corresponds to one block of ciphertext. A 
transmission error in one block of ciphertext results in only one bad block of decrypted plaintext. In 
CBC mode, a bad block of ciphertext will result in two bad blocks of decrypted plaintext because the 
previous ciphertext block is used in decrypting a current plaintext block. In CFB mode, using an 
underlying cipher with a 64-bit block size, a bad byte of ciphertext will result in eight more bad bytes 
of plaintext, as the bogus ciphertext byte works its way through CFB's internal buffer. OFB doesn't 
exhibit this property; a single bad bit in OFB mode results in a single bad decrypted plaintext bit. 

In cipher modes, there's a trade-off between making the ciphertext resistant to cryptanalyis and 
making the ciphertext robust in the face of transmission errors. ECB, for example, is the easiest mode 
to break, but it also has no error propagation.  

7.3 Algorithms 

One of the nice features of the provider architecture in the Security API is that it's possible to use 
different cryptographic algorithms without having to rewrite your program. The SunJCE provider 
includes three cipher algorithms. Other providers include other algorithms; you can select one 
according to your needs and budget. 

Table 7.1 lists cipher algorithms and the providers that support them. Table 7.2 gives details on the 
providers. 

Table 7.1, Cipher Algorithms 

Name Provider(s) 

DES SunJCE, Cryptix, IAIK, JCP 

DESede (triple DES) SunJCE, Cryptix (DES-EDE3), IAIK (3DES), JCP 

PBEWithMD5AndDES SunJCE 

RSA Cryptix, IAIK, JSAFE 

Blowfish Cryptix 

IDEA Cryptix, IAIK, JCP 

SPEED Cryptix 

RC2 IAIK, Cryptix 

RC4 IAIK, Cryptix, JCP 
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Name Provider(s) 

CAST5 Cryptix 

LOKI91 Cryptix 

SAFER Cryptix 

Square Cryptix 

 

Table 7.2, Cipher Algorithm Providers 

Name Full name Location Free? 
U.S. 

only? 

SunJCE 
Sun JCE Security Provider 

v1.0 
http://java.sun.com/products/jdk/1.2/jce/ Yes Yes 

Cryptix Cryptix for Java (3.0 or later) 
http://www.systemics.com/software/cryptix-

java/ Yes No 

IAIK IAIK Security Provider http://www.jce.iaik.tu-graz.ac.at/ No No 

JSAFE RSA's Java Crypto Toolkit http://www.rsa.com/rsa/products/jsafe/ No Yes 

JCP JCP Crypto Development Kit http://www.jcp.co.uk/products/ No No 

 

7.4 javax.crypto.Cipher 

The javax.crypto.Cipher class encapsulates a cipher algorithm. A Cipher either encrypts data or 
decrypts data. The Cipher class encompasses both asymmetric (public key) and symmetric (private 
key) algorithms. 

This class is part of the JCE, a piece of software that cannot be exported from the United States. For a 
description of the JCE, refer to Chapter 3. Groups outside the United States have implemented the 
JCE based on its documentation. Two such implementations are Cryptix  and IAIK-JCE 
(http://www.systemics.com/software/cryptix-java/ & (http://www.jce.iaik.tu-graz.ac.at/). 

Cipher is an abstract class, so you can't instantiate it directly. Like the classes in the JCA, it provides 
factory methods that return useful instances. Using a Cipher is a three-step process: 

1. Obtain a Cipher using the getInstance() factory method. 

2. Initialize the Cipher for encryption or decryption using init(). These methods accept a 
mode (either Cipher.ENCRYPT_MODE or Cipher.DECRYPT_MODE) and a Key. The type of key 
you use, public, private, or secret, depends on the Cipher's algorithm. 

3. Encrypt or decrypt data using the update() and doFinal() methods. 

http://java.sun.com/products/jdk/1.2/jce/
http://www.systemics.com/software/cryptixjava/
http://www.jce.iaik.tu-graz.ac.at/
http://www.rsa.com/rsa/products/jsafe/
http://www.jcp.co.uk/products/
http://www.systemics.com/software/cryptix-java/
http://www.jce.iaik.tu-graz.ac.at/
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In the SecretWriting example from Chapter 1, for the encrypting case, these steps look like: 

Cipher cipher = Cipher.getInstance("DES/ECB/PKCS5Padding"); 
cipher.init(Cipher.ENCRYPT_MODE, key); 
byte[] raw = cipher.doFinal(stringBytes); 

You probably noticed that the call to getInstance() specifies more than just an algorithm name. As a 
matter of fact, we've specified an algorithm (DES), a mode (ECB), and a padding scheme 
(PKCS5Padding). The getInstance() methods for Cipher recognize two types of strings: 

algorithm  

You can pass the algorithm name by itself. Whichever provider supplies the algorithm 
implementation will also supply a default mode and padding scheme. 

algorithm/mode/padding  

You've seen this already. If you wish, you can specify an algorithm, a cipher mode, and a 
padding scheme in your call to getInstance(). 

7.4.1 Getting a Cipher 

Cipher's factory methods look like all the factory methods in the JCA, so you already know how to use 
them: 

public static Cipher getInstance(String algorithm) throws NoSuchAlgorithmException, 
NoSuchPaddingException  

This factory method returns a Cipher for the given algorithm. The algorithm name usually 
includes additional information, like a padding scheme and a cipher mode. 

public static Cipher getInstance(String algorithm, String provider) throws 
NoSuchAlgorithmException, NoSuchProviderException, NoSuchPaddingException  

This method is the same as above, but it uses the named provider's implementation of the 
given algorithm. 

Just as there are standard algorithm names, there are standard names for the cipher modes and 
padding schemes supported by the JCE. These are shown in Table 7.3. Note that you can specify a bit 
size with OFB and CFB mode. If no bit size is specified, the cipher's block size is used. All of the 
padding schemes apply to the JCE's cipher algorithms, DES and DESede. 

Table 7.3, Standard Names for Cipher Modes and Padding Schemes 

Name Description 

ECB Electronic code book mode 

CBC Cipher block chaining mode 

PCBC Propagating cipher block chaining mode 

CFBn Cipher feedback mode, using n bits per operation 

OFBn Output feedback mode, using n bits per operation[4] 

NoPadding No padding 

PKCS5Padding PKCS#5-style padding 

[4] As I mentioned, you should not use OFB unless the feedback size is the same as the cipher block size. This is the 
default behavior if you request OFB mode without specifying a feedback size. 
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7.4.2 Basic Information 

Several of Cipher's methods return basic information about the cipher: 

public final Provider getProvider()  

This method returns the cryptographic provider of this Cipher. 

public final int getBlockSize()  

This method returns the block size of the cipher, measured in bytes. 

public final int getOutputSize(int inputLen) throws IllegalStateException  

This method calculates the output size for the next call to update() or doFinal(), given an 
input length. The lengths are measured in bytes. If the Cipher has not been initialized, an 
exception is thrown. This method returns a maximum length; calling update() or doFinal() 
with the same length of input data may actually result in a shorter output length than reported 
by this method. 

public final byte[] getIV()  

This method returns the IV used to encrypt data. It is only for cipher modes that use an IV. A 
Cipher in ECB mode, for example, will return null from this method. You can call this 
method immediately after initializing a Cipher for encryption to retrieve the Cipher's IV. The 
same IV should be used, later, to initialize the Cipher for decryption. 

7.4.3 Initializing a Cipher 

The Cipher can be initialized for encryption or decryption, using constants defined in the Cipher 
class: 

public static final int ENCRYPT_MODE  
public static final int DECRYPT_MODE  

Use one of these constants with an init() method to initialize the Cipher for encryption or 
decryption. 

Cipher provides four overloaded init() methods. You can completely reinitialize the Cipher at any 
time by calling one of the init() methods. 

7.4.3.1 Generic 

Two of Cipher's init() methods are algorithm independent. If you use these methods and program 
carefully, you should be able to switch the algorithms that you're using without rewriting any of your 
application. Given the modular nature of the provider architecture, it would be nice if your users could 
choose the strongest installed algorithm to use with your application. 

public final void init(int opmode, Key key) throws InvalidKeyException  

This method initializes the Cipher to encrypt or decrypt data, using the supplied key. opmode 
should be ENCRYPT_MODE or DECRYPT_MODE. An exception is thrown if the wrong type of key is 
supplied. 

public final void init(int opmode, Key key, SecureRandom random) throws InvalidKeyException  

This method is the same as above, except the Cipher will use the supplied SecureRandom to 
generate random numbers internally. 

7.4.3.2 Name brand 

Sometimes you may not be able to correctly initialize a Cipher in an algorithm-independent way. In 
these cases, the Cipher can be initialized by a set of algorithm-specific parameters encapsulated by an 
java.security.spec.AlgorithmParameterSpec object. Later in this chapter, there's an example of 
this technique based on passphrase encryption. 

public final void init(int opmode, Key key, AlgorithmParameterSpec params) throws 
InvalidKeyException, InvalidAlgorithmParameterException  

You can initialize a Cipher with algorithm-specific parameters using this method. 
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public final void init(int opmode, Key key, AlgorithmParameterSpec params, SecureRandom 
random) throws InvalidKeyException, InvalidAlgorithmParameterException  

This method is the same as above, but it tells the Cipher to use the supplied SecureRandom 
for generating random numbers. 

Feedback ciphers need to be set up with an IV to decrypt data properly. For these ciphers, a special 
parameter object, javax.crypto.spec.IvParameterSpec, holds the IV. The following code 
demonstrates how to initialize a Cipher for decryption using a particular IV: 

// First obtain iv, a byte array, and sessionKey, a DES key. 
Cipher cipher = Cipher.getInstance("DES/CBC/PKCS5Padding"); 
IvParameterSpec spec = new IvParameterSpec(iv); 
cipher.init(Cipher.DECRYPT_MODE, sessionKey, spec); 

You'll see feedback ciphers and IVs in action in Chapter 10 and Chapter 11.  

7.4.4 Feeding Data to a Cipher 

A Cipher transforms one block of data into another block of data, either encrypting or decrypting. 
Two methods, update() and doFinal() , are used to feed data into the Cipher. There are four 
overloaded versions of update(): 

public final byte[] update(byte[] input) throws IllegalStateException  

This method adds the given array of input data to the Cipher. If the Cipher has accumulated 
enough data to transform one or more blocks, it does so, returning the transformed blocks. 
Leftover data that does not fill an entire block is stored for use with the next call to update() 
or doFinal(). 

public final byte[] update(byte[] input, int inputOffset, int inputLen) throws IllegalStateException  

This method is the same as above, except that it uses inputLen bytes of the supplied byte 
array, starting at inputOffset. 

public final int update(byte[] input, int inputOffset, int inputLen, byte[] output) throws 
IllegalStateException, ShortBufferException  

This method works like the previous method. The output, however, is written into the 
supplied output array. If the output array is too small to hold the results of the call to 
update(), a ShortBufferException is thrown. This method returns the total number of 
bytes that were written to the output array. 

public final int update(byte[] input, int inputOffset, int inputLen, byte[] output, int outputOffset) 
throws IllegalStateException, ShortBufferException  

This method is the same as above, except that the output is written to the given output array, 
starting at outputOffset. As before, a ShortBufferException is thrown if there's not 
enough space in the output array. 

Let's see how update() works in practice. In the following examples, assume that we have already 
obtained a DES key. 

Cipher cipher = Cipher.getInstance("DES/ECB/PKCS5Padding"); 
cipher.init(Cipher.ENCRYPT_MODE, key); 
byte[] plain5 = "comic".getBytes(); 
byte[] plain7 = "serious".getBytes(); 
byte[] step1 = cipher.update(plain5); 
byte[] step2 = cipher.update(plain7); 

The block size of a DES cipher is 8 bytes. In the first call to update(), we pass only 5 bytes, which is 
not enough for a full block. Thus, no data is returned, and the length of the step1 array is 0. Our next 
call to update() adds 7 more bytes, for a total of 12. This is enough to encrypt and return 1 block of 
data. The step2 array is 8 bytes long and contains the first block of ciphertext. What happened to the 
4 leftover bytes? The Cipher is still keeping track of them. You can encrypt them, if they are the end of 
the plaintext, with the doFinal() methods, which I'll discuss in a moment. 
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There's an alternate approach to the previous example that may be a little cleaner, depending on what 
you're trying to do: 

Cipher cipher = Cipher.getInstance("DES/ECB/PKCS5Padding"); 
cipher.init(Cipher.ENCRYPT_MODE, key); 
byte[] plain5 = "comic".getBytes(); 
byte[] plain7 = "serious".getBytes(); 
int outputLength = cipher.getOutputSize(plain5.length + plain7.length); 
byte[] ciphertext = new byte[outputLength]; 
int length1 = cipher.update(plain5, 0, plain5.length, 
    ciphertext); 
int length2 = cipher.update(plain7, 0, plain7.length, 
    ciphertext, length1); 

First, we ask the Cipher how big the output will be for our total input. The total length is the sum of 
the lengths of the plaintext arrays, or 12 bytes. Because this is a padding cipher, the second incomplete 
block will be padded. Thus, the Cipher calculates an output size of 16 bytes. We create an array of this 
length, called ciphertext. Then we use update() to write the output data into the array. The first call 
to update(), as before, writes no data and returns 0. The second call encrypts one block and writes 
the ciphertext into the supplied array. 

You can tell the Cipher to finish encrypting or decrypting by calling one of the doFinal() methods. 
There are six varieties of this method, but they all do basically the same thing: 

public final byte[] doFinal() throws IllegalStateException, IllegalBlockSizeException, 
BadPaddingException  

This method tells the Cipher to finish an encryption or decryption operation. Any leftover 
data from previous calls to update() is processed. The data is padded, if this is a padding 
cipher. The output is returned as a byte array. 

If the Cipher has not been initialized, an IllegalStateException is thrown. When 
encrypting, an IllegalBlockSizeException is thrown if the length of the input data is not a 
multiple of the block size and the Cipher does not implement padding. When decrypting, an 
IllegalBlockSizeException is thrown if the length of the input data is not an integral 
number of blocks. Finally, a BadPaddingException is thrown by padding Ciphers when the 
decrypted plaintext does not contain correct padding. 

public final int doFinal(byte[] output, int outputOffset) throws IllegalStateException, 
IllegalBlockSizeException, ShortBufferException, BadPaddingException  

This method is the same as above, except that the output is written to the supplied array, 
starting at outputOffset. The number of output bytes is returned. A ShortBufferException 
is thrown if the output array is not long enough. 

public final byte[] doFinal(byte[] input) throws IllegalStateException, IllegalBlockSizeException, 
BadPaddingException  

Use this method to add the supplied input data to the Cipher and then finish an encryption or 
decryption operation. It is equivalent to calling update(input), followed by doFinal(), 
except that the output from both steps is returned from this method. 

public final byte[] doFinal(byte[] input, int inputOffset, int inputLen) throws IllegalStateException, 
IllegalBlockSizeException, BadPaddingException  

This method is the same as above, except that it uses inputLen bytes of the supplied array, 
starting at inputOffset. 

public final int doFinal(byte[] input, int inputOffset, int inputLen, byte[] output) throws 
IllegalStateException, IllegalBlockSizeException, ShortBufferException, BadPaddingException  

This method is the same as above, except that it writes output data into the supplied array. A 
ShortBufferException is thrown if the output array is too small. 

public final int doFinal(byte[] input, int inputOffset, int inputLen, byte[] output, int outputOffset) 
throws IllegalStateException, IllegalBlockSizeException, ShortBufferException, 
BadPaddingException  

This method is the same as the preceding method, except that the output data is written to the 
supplied array starting at outputOffset. 
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To see how this method works, let's extend the last example by adding a call to doFinal() at the end: 

Cipher cipher = Cipher.getInstance("DES/ECB/PKCS5Padding"); 
cipher.init(Cipher.ENCRYPT_MODE, key); 
byte[] plain5 = "comic".getBytes(); 
byte[] plain7 = "serious".getBytes(); 
int outputLength = cipher.getOutputSize(plain5.length + plain7.length); 
byte[] ciphertext = new byte[outputLength]; 
int length1 = cipher.update(plain5, 0, plain5.length, 
    ciphertext); 
int length2 = cipher.update(plain7, 0, plain7.length, 
    ciphertext, length1); 
int length3 = cipher.doFinal(ciphertext, length1 + length2); 

As before, we add 12 bytes to the Cipher, using update() . One block is encrypted, leaving 4 leftover 
bytes. The call to doFinal() causes the Cipher to pad the 4 leftover bytes, creating a full 8-byte block. 
This block is encrypted and written into our ciphertext array. The value of length3 is 8, 
representing the ciphertext block that was produced in the call to doFinal(). 

The example is a bit contrived. In many cases, you can encrypt or decrypt data with a single call to 
doFinal(), like this: 

Cipher cipher = Cipher.getInstance("DES/ECB/PKCS5Padding"); 
 
cipher.init(Cipher.ENCRYPT_MODE, key); 
 
 
byte[] plaintext = "comicserious".getBytes(); 
 
 
byte[] ciphertext = cipher.doFinal(plaintext); 

7.5 Cipher's Close Relatives 

7.5.1 Cipher Streams 

If you are able to encrypt or decrypt all of your data in one shot, then a call to doFinal() is all you 
need. In some cases, however, you need to encrypt data in pieces. For example, loading a large file into 
memory to encrypt it would not be practical. 

The JCE offers two classes that worry about the details of encrypting or decrypting a stream of data. 
javax.crypto.CipherInputStream and javax.crypto.CipherOutputStream can be used to 
encrypt and decrypt data without thinking too hard. They are subclasses of the standard 
FilterInputStream and FilterOutputStream classes, so they work smoothly with the rest of the 
stream classes in the java.io package. You can construct one of these streams by specifying an 
underlying stream (as with all filtered streams) and an initialized Cipher object.[5] 

[5] Don't confuse the cipher stream classes with stream ciphers. CipherInputStream and 
CipherOutputStream are stream classes that can use any cipher, including block ciphers, to encrypt and 
decrypt data. They are useful classes because they plug in to the rest of the java.io package. 

The following example encrypts or decrypts an entire disk file. Like the SecretWriting application 
(in Chapter 1), it reads a private key from SecretKey.ser. If that file does not exist, Cloak creates a new 
key and saves it in a newly created file, SecretKey.ser. The input file is read using an ordinary 
FileInputStream. The file is encrypted or decrypted using a CipherOutputStream. 

import java.io.*; 
import java.security.*; 
 
import javax.crypto.*; 
 
public class Cloak { 
  public static final int kBufferSize = 8192; 
 
  public static void main(String[] args) throws Exception { 
    // Check arguments. 
    if (args.length < 3) { 
      System.out.println("Usage: Cloak -e|-d inputfile outputfile"); 
      return; 
    } 
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    // Get or create key. 
    Key key; 
    try { 
      ObjectInputStream in = new 
          ObjectInputStream(new FileInputStream("SecretKey.ser")); 
      key = (Key)in.readObject(); 
      in.close(); 
    } 
    catch (Exception e) { 
      KeyGenerator generator = KeyGenerator.getInstance("DES"); 
      generator.init(new SecureRandom()); 
      key = generator.generateKey(); 
      ObjectOutputStream out = new ObjectOutputStream( 
          new FileOutputStream("SecretKey.ser")); 
      out.writeObject(key); 
      out.close(); 
    } 
 
    // Get a cipher object. 
    Cipher cipher = Cipher.getInstance("DES/ECB/PKCS5Padding"); 
 
    // Encrypt or decrypt. 
    if (args[0].indexOf("e") != -1) 
      cipher.init(Cipher.ENCRYPT_MODE, key); 
    else 
      cipher.init(Cipher.DECRYPT_MODE, key); 
 
    FileInputStream in = new FileInputStream(args[1]); 
    FileOutputStream fileOut = new FileOutputStream(args[2]); 
    CipherOutputStream out = new CipherOutputStream(fileOut, cipher); 
    byte[] buffer = new byte[kBufferSize]; 
    int length; 
    while ((length = in.read(buffer)) != -1) 
      out.write(buffer, 0, length); 
 
     
in.close(); 
 
    out.close(); 
 
  } 
 
} 

7.5.2 javax.crypto.SealedObject 

JCE 1.2 includes a utility class that uses encryption, javax.crypto.SealedObject . Instances of this 
class act as containers for other objects. The contained object is encrypted to provide confidentiality. 
You can construct a SealedObject to contain any Serializable object: 

public SealedObject(Serializable object, Cipher c) throws IOException, IllegalBlockSizeException  

This constructor wraps a SealedObject around the supplied Serializable object. The 
supplied cipher is used to encrypt (seal) the object. The cipher should already be initialized for 
encryption. If an error occurs in serializing the object or encrypting it, an exception is thrown. 

To retrieve the original, unencrypted object, use getObject() : 

public final Object getObject(Cipher c) throws IOException, ClassNotFoundException, 
IllegalBlockSizeException, BadPaddingException  

This method decrypts the contained object using the given Cipher. Exceptions are thrown if 
the Cipher is not properly initialized or if there is an error with the padding. 

Suppose, for example, that you wanted to serialize an object to send over a network connection. To 
prevent spies from viewing the contents of the object, or even deserializing it themselves, you can use 
SealedObject. Without any cryptographic protection, your code might look like this: 

// set up the socket connection 
ObjectOutputStream out = new ObjectOutputStream(socket.getOutputStream()); 
out.writeObject(secretObject); 
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You could send a sealed version of the object instead, like this: 

// set up the socket connection and obtain the key 
ObjectOutputStream out = new ObjectOutputStream(socket.getOutputStream()); 
Cipher cipher = Cipher.getInstance("DES/ECB/PKCS5Padding"); 
cipher.init(Cipher.ENCRYPT_MODE, key); 
SealedObject so = new SealedObject(secretObject, cipher); 
out.writeObject(so); 

On the other end of the network connection, you need to deserialize the SealedObject and retrieve its 
contents, using getObject() : 

// set up the socket connection and obtain the key 
ObjectInputStream in = new ObjectInputStream(socket.getInputStream()); 
SealedObject so = (SealedObject)in.readObject(); 
Cipher cipher = Cipher.getInstance("DES/ECB/PKCS5Padding"); 
cipher.init(Cipher.DECRYPT_MODE, key); 
 
Object secretObject = so.getObject(cipher); 

7.6 Passphrase Encryption 

Passphrase encryption is a "quick-and-dirty" method for encrypting data. Instead of having to manage 
a private key in a file, a passphrase is used to generate a key. A passphrase is something a person can 
remember and type, which eliminates the need to store a key in a file somewhere. A passphrase is just 
like a password, except it's usually longer. The key is constructed by calculating a message digest of 
the passphrase. The digest value is used to construct a key for a symmetric cipher. 

The usual caveats about passwords apply to passphrases. People are likely to choose easy-to-
remember passphrases, which are also easy to guess. Dictionary attacks are also possible, though a 
passphrase is usually longer than a password, thereby making dictionary attacks more expensive. 
People also are likely to keep their passphrases in wallets, stuck to computer monitors, tattooed on 
their foreheads, or in other obvious places. If you want a simple encryption method that provides 
moderate security, however, passphrase encryption may be sufficient. 

7.6.1 Salt and Vinegar 

You can reduce the efficiency of a dictionary attack by using salt . Typically, an attacker compiles a list 
of common or likely passphrases. Then he or she calculates the digest of each passphrase and stores it 
(this is the dictionary). Now the attacker can construct a key from each digest value to see if a piece of 
ciphertext decrypts or not. 

Salt is additional data concatenated to the passphrase. The passphrase and salt are digested together. 
This means that the attacker's dictionary now needs to contain many more entries, one for each 
possible salt value for each probable passphrase. To understand this, consider a very simple attacker's 
dictionary. It contains three DES key possibilities based on common passphrases. (md5() denotes the 
operation of digesting using an MD5 message digest.) 

md5("gandalf") 
md5("sex") 
md5("secret") 

When the attacker finds some passphrase-encrypted data, he or she can simply use the three prebuilt 
keys in the dictionary to decrypt the data and see if anything intelligible is produced. Now let's see 
how salt makes the attacker's life difficult. We'll just consider a two-bit salt, which I'll represent as a 
number from to 3. The attacker's dictionary now must include these DES key possiblities: 

md5(0, "gandalf") 
md5(0, "sex") 
md5(0, "secret") 
 
md5(1, "gandalf") 
md5(1, "sex") 
md5(1, "secret") 
 
md5(2, "gandalf") 
md5(2, "sex") 
md5(2, "secret") 
 
md5(3, "gandalf") 
md5(3, "sex") 
md5(3, "secret") 
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Adding a 2-bit salt multiplied the size of the dictionary by 4. If you use a 64-bit salt, as described in 
this section, it multiplies the dictionary size by 264, which is a big number.  

Iterations are another way to foil dictionary attacks. Let's look at the simple dictionary once more: 

md5("gandalf") 
md5("sex") 
md5("secret") 

The iteration count specifies how many times the passphrase should be digested to produce a key. The 
following dictionary, for example, has entries for one, two, and three iterations: 

md5("gandalf") 
md5("sex") 
md5("secret") 
 
md5(md5("gandalf")) 
md5(md5("sex")) 
md5(md5("secret")) 
 
md5(md5(md5("gandalf"))) 
md5(md5(md5("sex"))) 
md5(md5(md5("secret"))) 

Much like salt, the iteration count is designed to make dictionary attacks infeasible. 

JCE 1.2 includes an implementation of passphrase encryption, based on PKCS#5, a standard 
published by RSA Data Security, Inc.[6] No rocket science is involved in PKCS#5 passphrase 
encryption; it's based on the MD5 message digest and a DES cipher in CBC mode. You could write it 
yourself, if you wanted. But JCE 1.2 includes an implementation of the algorithm, so there's no point 
reinventing it.  

[6] You may remember PKCS#5 from earlier in this chapter, when I talked about cipher padding. The document 
is mostly concerned with passphrase encryption; padding is discussed along the way. 

7.6.2 Test Drive 

In this section, we'll develop a simple class, PBE , to demonstrate passphrase encryption. It will accept 
a passphrase typed on the command line and either encrypt or decrypt a file. It is used as follows: 

java PBE option passphrase inputfile outputfile 

The option parameter should be -e for encryption and -d for decryption. The PBE class has a single 
method, main(), that does all the work. It begins by reading parameters from the command line. 

import java.io.*; 
import java.security.*; 
import java.security.spec.*; 
 
import javax.crypto.*; 
import javax.crypto.spec.*; 
 
public class PBE { 
  public static void main(String[] args) throws Exception { 
    String options = args[0]; 
    String passphrase = args[1]; 
    File inputFile = new File(args[2]); 
    File outputFile = new File(args[3]); 

The name of the passphrase encryption algorithm in the JCE is PBEWithMD5AndDES. We'll be using 
this unwieldy name a few times, so we assign it to a local variable. We also create a byte array, salt, 
and fix the iteration count at 20. 

    String algorithm = "PBEWithMD5AndDES"; 
    byte[] salt = new byte[8]; 
    int iterations = 20; 

This class either encrypts a file or decrypts it. It sets a local Boolean variable based on what option was 
entered on the command line: 

boolean encrypting = (options.indexOf("e") != -1); 
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To create a DES key from a passphrase, you need to use a SecretKeyFactory, as described in Chapter 
4. First, create a PBEKeySpec from the supplied passphrase. Then a SecretKeyFactory for the 
passphrase encryption algorithm is used to create a key: 

    // Create a key from the supplied passphrase. 
    KeySpec ks = new PBEKeySpec(passphrase); 
    SecretKeyFactory skf = SecretKeyFactory.getInstance(algorithm); 
    SecretKey key = skf.generateSecret(ks); 

Next, the PBE class reads the input file. When encrypting, the entire input file is read. When 
decrypting, we expect to find the salt value at the beginning of the file. 

    // Read the input. 
    FileInputStream in = new FileInputStream(inputFile); 
    int length = (int)inputFile.length(); 
    if (!encrypting) in.read(salt); 
    byte[] input = new byte[length - (encrypting ? 0 : 8)]; 
    in.read(input); 
    in.close(); 

If PBE is encrypting a file, it creates a salt value based on the digest of the passphrase and the input 
file: 

    if (encrypting) { 
      // Create the salt from eight bytes of the digest of P || M. 
      MessageDigest md = MessageDigest.getInstance("MD5"); 
      md.update(passphrase.getBytes()); 
      md.update(input); 
      byte[] digest = md.digest(); 
      System.arraycopy(digest, 0, salt, 0, 8); 
    } 

To initialize the Cipher with the salt and iteration count, we need an AlgorithmParameterSpec that 
encapsulates this information. The JCE supplies such a class, 
javax.crypto.spec.PBEParameterSpec: 

    // Create the algorithm parameters. 
    AlgorithmParameterSpec aps = new PBEParameterSpec(salt, iterations); 

The Cipher is created and initialized, and the input data is transformed: 

    // Encrypt or decrypt the input. 
    Cipher cipher = Cipher.getInstance(algorithm); 
    int mode = encrypting ? Cipher.ENCRYPT_MODE : Cipher.DECRYPT_MODE; 
    cipher.init(mode, key, aps); 
    byte[] output = cipher.doFinal(input); 

We're ready to write to the output file now. If PBE has just encrypted a file, the salt is written to the 
output also: 

    // Write the output. 
    OutputStream out = new FileOutputStream(outputFile); 
    if (encrypting) out.write(salt); 
    out.write(output); 
    out.close(); 
  } 
} 

You can use the -e option to encrypt a file and any other option to decrypt it. For example, a sample 
session follows. I start with a simple text file, called plaintext. PBE is used to encrypt this file; the 
encrypted filename is ciphertext. Then PBE is used to decrypt this file. The results are placed in a file 
called decrypted: 

C:\ type plaintext 
Meet me at midnight down by the old rail yard. 
 
C:\ java PBE -e "This is the passphrase." plaintext ciphertext 
 
C:\ type ciphertext 
"_9-_`y++-   _   8_PH[îÇ+o+P&-ªpÜ¡vå\+ì_w3l_u_y¥«<ñO+,_+__F_TA=3a+¶|+ÿ 
 
C:\ java PBE -d "This is the passphrase." ciphertext decrypted 
 
C:\ type decrypted 
Meet me at midnight down by the old rail yard. 
 
C:\ 
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If you type even one character of the passphrase incorrectly, the ciphertext will not decrypt properly. 
In a real application, of course, the passphrase should never be visible, as it is here. You would 
probably use an AWT TextField with the setEchoChar() method to conceal the passphrase.[7]  

[7] In the Swing world, you would use a JPasswordField. 

7.7 Inside Cipher 

So far, you've looked at different ways you can use the Cipher class. Now, I'll show you how to write 
your own cipher implementation. First, I'll talk about CipherSpi, the superclass of any cipher 
implementation. We'll develop a generic BlockCipher class to handle the mundane details of block 
formatting. Finally, I'll present two cipher "wrapper" classes that implement CBC and CFB mode with 
any existing block cipher. 

7.7.1 SPI 

The methods in javax.crypto.CipherSpi mirror methods in Cipher's API. As a matter of fact, the 
SPI is a little simpler than the API because overloaded API methods like update() and doFinal() call 
fewer overloaded versions of their SPI counterparts. 

7.7.1.1 Setup 

Suppose you want to implement DES in CBC mode with PKCS#5 padding. There are several ways to 
do this. You might, for example, write a class that supports this exact combination of mode and 
padding with DES. Alternately, you could write a class that implements DES in CBC mode and could 
support several different padding schemes. Finally, you might just write a generic DES class that 
supports multiple modes and padding schemes. 

If you write generic classes and set them up properly in a provider (see Chapter 9), your 
implementation will be notified what mode and padding scheme it should use. This notification occurs 
through calls to the following methods: 

protected abstract void engineSetMode(String mode) throws NoSuchAlgorithmException  

This method informs the cipher implementation that it should operate in the given mode. If 
the mode is not supported by the implementation, an exception should be thrown. 

protected abstract void engineSetPadding(String padding) throws NoSuchPaddingException  

This method tells the CipherSpi to use the given padding scheme. If it is not supported, an 
exception should be thrown. 

Suppose you write a generic DES implementation. If you set up your provider properly, your class will 
be instantiated when someone requests "DES/CBC/ PKCS5Padding" in a call to 
Cipher.getInstance(). Your implementation's engineSetMode() will be called with "CBC" and 
engineSetPadding() will be called with "PKCS5Padding." 

Alternately, you might write a generic DES CBC mode implementation. As before, if your provider is 
properly configured, your class will be instantiated when someone asks for a 
"DES/CBC/PKCS5Padding" cipher. Then engineSetPadding() will be called to let your 
implementation know it should use "PKCS5Padding." 

7.7.1.2 Basic information 

The getBlockSize(), getOutputSize(), and getIV() methods in Cipher's API all have 
counterparts in CipherSpi. When the API method is called, the corresponding SPI method will be 
called in your cipher implementation: 

protected abstract int engineGetBlockSize()  

This method returns the block size of the cipher, in bytes. 

protected abstract int engineGetOutputSize(int inputLen)  

This method returns the length of the output that will be produced by a call to update() or 
doFinal() with input data of the given length. This is a maximum value; the length of the 
data returned by the next update() or doFinal() may be shorter than what this method 
returns.  
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protected abstract byte[] engineGetIV()  

If this CipherSpi is running in a feedback mode, this method returns the IV. 

7.7.1.3 Initializing 

CipherSpi contains just two methods for initialization: 

protected abstract void engineInit(int opmode, Key key, SecureRandom random) throws 
InvalidKeyException  

This method handles algorithm-independent cipher initializiation. opmode should be one of 
Cipher.ENCRYPT_MODE or CIPHER.DECRYPT_MODE. You should check that the supplied Key is 
the correct type for your cipher algorithm; if not, throw an InvalidKeyException. Finally, if 
your cipher implementation needs random numbers, you should use the supplied 
SecureRandom to generate them. 

protected abstract void engineInit(int opmode, Key key, AlgorithmParameterSpec params, 
SecureRandom random) throws InvalidKeyException, InvalidAlgorithmParameterException  

This method handles algorithm-specific cipher initialization. The opmode, key, and random 
parameters have the same meanings as above. An additional object, params, contains 
algorithm-specific parameters. Your CipherSpi subclass should attempt to cast this object to 
a recognized parameter type and extract information from it. If you don't recognize the type of 
the object, throw an InvalidAlgorithmParameterException. For example, a cipher in a 
feedback mode will expect to receive an IvParameterSpec object, from which the IV can be 
extracted. 

7.7.1.4 Feeding 

The Cipher class has a bevy of overloaded update() and doFinal() methods that are used to feed 
data into the cipher and gather the results. These methods end up calling engineUpdate() or 
engineDoFinal() in CipherSpi. It's up to the cipher implementation to provide data buffering and 
make sure the block boundaries come out right. 

protected abstract byte[] engineUpdate(byte[] input, int inputOffset, int inputLen)  

This method is called to add input data to the cipher. inputLen bytes of data are added from 
the supplied input array, starting at inputOffset. Your implementation can transform 
(encrypt or decrypt) some or all of the input data and return the result as a byte array. 

protected abstract int engineUpdate(byte[] input, int inputOffset, int inputLen, byte[] output, int 
outputOffset) throws ShortBufferException  

This method works as above, but it writes the output data into the supplied array, starting at 
outputOffset. It returns the number of output bytes written. If the output array is not large 
enough, a ShortBufferException should be thrown. 

protected abstract byte[] engineDoFinal (byte[] input, int inputOffset, int inputLen) throws 
IllegalBlockSizeException, BadPaddingException  

This method will be called when an encryption or decryption operation should be finished. 
Your cipher implementation should transform any cached input data and the supplied input 
data. The results are returned in a byte array. If your implementation does not implement 
padding, and if this method is passed a partial block, it should throw an 
IllegalBlockSizeException. When decrypting, padding ciphers should throw a 
BadPaddingException if the padding is missing or malformed. 

protected abstract int engineDoFinal (byte[] input, int inputOffset, int inputLen, byte[] output, int 
outputOffset) throws ShortBufferException, IllegalBlockSizeException, BadPaddingException  

This method is similar to the previous method, but it writes its output data into the supplied 
array, starting at outputOffset. If the output array is not big enough, a 
ShortBufferException is thrown.  
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7.7.2 BlockCipher 

If you implement a subclass of Cipher, you'll have to face the issue of block handling. Block handling 
refers to a cipher's ability to deal with different-sized chunks of data. A programmer can send any 
amount of data to your cipher at any time, via the update() and doFinal() methods. Your 
CipherSpi subclass must then contain the logic that breaks down the input data into block-sized 
chunks for encrypting or decrypting. 

In this section, we'll develop a class that takes care of the buffering and block handling for a generic 
block cipher. The class is oreilly.jonathan.crypto .BlockCipher ; it's a subclass of CipherSpi. It 
defines CipherSpi's engineUpdate() and engineDoFinal() methods, implementing a simple 
buffering scheme. In addition to the rest of CipherSpi's methods, subclasses of BlockCipher will 
have to implement the following methods: 

protected abstract int engineTransformBlock(byte[] input, int inputOffset, int inputLength, byte[] 
output, int outputOffset) throws ShortBufferException  

This method is called whenever a full block needs to be encrypted or decrypted. The input 
block is contained in inputLength bytes of input, starting at inputOffset. The transformed 
block should be written into output starting at outputOffset. The number of bytes written is 
returned. If the output array is too small, a ShortBufferException should be thrown.  

protected abstract int engineTransformBlockFinal(byte[] input, int inputOffset, int inputLength, 
byte[] output, int outputOffset) throws ShortBufferException  

This method is similar to the method above, except it signifies the end of an encryption or 
decryption operation. This method may be passed less than a full block. When encrypting, 
padding ciphers should add padding. When decrypting, padding ciphers should remove 
padding. 

The BlockCipher class consists of three sections. In the first section, it declares the abstract 
engineTransformBlock() and engineTransformBlockFinal() methods. Then there are a handful 
of methods that manage BlockCipher's internal data buffering scheme. Finally, BlockCipher 
contains definitions for engineUpdate() and engineDoFinal() . 

The class begins with definitions of the block transforming methods. 

package oreilly.jonathan.crypto; 
 
import java.math.BigInteger; 
import java.security.*; 
import java.security.spec.*; 
 
import javax.crypto.*; 
 
public abstract class BlockCipher 
    extends CipherSpi { 
  protected abstract int engineTransformBlock(byte[] input, 
      int inputOffset, int inputLength, byte[] output, int outputOffset) 
      throws ShortBufferException; 
   
  protected abstract int engineTransformBlockFinal(byte[] input, 
      int inputOffset, int inputLength, byte[] output, int outputOffset) 
      throws ShortBufferException; 

BlockCipher stores extra input data in an internal buffer. The buffered data is used with input data 
supplied in subsequent engineUpdate() and engineDoFinal() calls: 

  protected byte[] mBufferedData; 
  protected int mBufferedLength; 

The checkBufferedData() method checks to see if the buffer exists. If not, or if it is not the same 
length as the block size, a new buffer is created: 

protected void checkBufferedData() { 
    if (mBufferedData == null || 
        mBufferedData.length != engineGetBlockSize()) { 
      mBufferedData = new byte[engineGetBlockSize()]; 
      mBufferedLength = 0; 
    } 
  } 
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The following method returns the length of the data stored in the buffer. Subclasses may need to call 
this method to calculate engineGetOutputSize(): 

protected int getBufferedDataLength() { 
    checkBufferedData(); 
    return mBufferedLength; 
  } 

To retrieve the buffered data, call getBufferedData() . The data will be copied into the supplied 
array, and the internal buffer is reset (by setting mBufferedLength to 0): 

protected void getBufferedData(byte[] output, int offset) { 
    checkBufferedData(); 
    System.arraycopy(mBufferedData, 0, output, offset, mBufferedLength); 
    mBufferedLength = 0; 
  } 

The addToBufferedData() method adds the specified data to the internal buffer: 

protected void addToBufferedData(byte[] input, int offset, int length) { 
    checkBufferedData(); 
    System.arraycopy(input, offset, 
        mBufferedData, mBufferedLength, length); 
    mBufferedLength += length; 
  } 

The first engineUpdate() method in BlockCipher calls the second overloaded version of the same 
method: 

protected byte[] engineUpdate(byte[] input, int inputOffset, 
      int inputLen) { 
    int length = 0; 
    byte[] out = new byte[engineGetOutputSize(inputLen)]; 
    try { length = engineUpdate(input, inputOffset, inputLen, out, 0); } 
    catch (ShortBufferException sbe) {} 
    if (length < out.length) { 
      byte[] shorter = new byte[length]; 
      System.arraycopy(out, 0, shorter, 0, length); 
      out = shorter; 
    } 
    return out; 
  } 

The algorithm in the second engineUpdate() method is as follows: 

1. Create a single input array from the buffered data and the supplied input data. 

2. Calculate the location and length of the last fractional block in the input data. 

3. Transform all full blocks in the input data. 

4. Save the last fractional block in the internal buffer. 

We begin by combining the buffered data and the input data to create a single input array: 

protected int engineUpdate(byte[] input, int inputOffset, int inputLen, 
      byte[] output, int outputOffset) throws ShortBufferException { 
    // Create a single array of input data. 
    int bufferedLength = getBufferedDataLength(); 
    byte[] totalInput = new byte[inputLen + bufferedLength]; 
    getBufferedData(totalInput, 0); 
    System.arraycopy(input, inputOffset, 
        totalInput, bufferedLength, inputLen); 

Next, we calculate the location and size of the last fractional block of input data: 

    // Figure out the location of the last fractional block. 
    int blockSize = engineGetBlockSize(); 
    int lastBlockSize = totalInput.length % blockSize; 
    int lastBlockOffset = totalInput.length - lastBlockSize; 

Then we transform each full block in the input array: 

    // Step through the array. 
    int outputLength = 0; 
    for (int i = 0; i < lastBlockOffset; i += blockSize) 
      outputLength += engineTransformBlock(totalInput, i, blockSize, 
          output, outputOffset + outputLength); 
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Finally, we copy the last fractional block into the internal buffer: 

    // Copy the remainder into mBufferedData. 
    addToBufferedData(totalInput, lastBlockOffset, lastBlockSize); 
    return outputLength; 
  } 

As with engineUpdate(), the first overloaded engineDoFinal() method simply calls the second 
overloaded version of the same method. 

  protected byte[] engineDoFinal(byte[] input, int inputOffset, 
      int inputLen) throws IllegalBlockSizeException, BadPaddingException { 
    int length = 0; 
    byte[] out = new byte[engineGetOutputSize(inputLen)]; 
    try { length = engineDoFinal(input, inputOffset, inputLen, out, 0); } 
    catch (ShortBufferException sbe) {} 
    if (length < out.length) { 
      byte[] shorter = new byte[length]; 
      System.arraycopy(out, 0, shorter, 0, length); 
      out = shorter; 
    } 
    return out; 
  } 

The procedure in engineDoFinal() is similar to that of engineUpdate(), but slightly different: 

1. As before, create a single input array from the buffered data and the supplied input data. 

2. Find the location and size of the last partial or full block. In engineUpdate(), we were just 
interested in the last partial block. 

3. Transform each full block in the input array by calling engineTrans-formBlock(). 

4. Transform the final partial or full block by calling engineTransform-BlockFinal() . 

protected int engineDoFinal(byte[] input, int inputOffset, int inputLen, 
      byte[] output, int outputOffset) throws ShortBufferException, 
      IllegalBlockSizeException, BadPaddingException { 
    // Create a single array of input data. 
    int bufferedLength = getBufferedDataLength(); 
    byte[] totalInput = new byte[inputLen + bufferedLength]; 
    getBufferedData(totalInput, 0); 
    if (inputLen > 0) 
      System.arraycopy(input, inputOffset, 
          totalInput, bufferedLength, inputLen); 
    // Find the location of the last partial or full block. 
    int blockSize = engineGetBlockSize(); 
    int lastBlockSize = totalInput.length % blockSize; 
    if (lastBlockSize == 0 && totalInput.length > 0) 
      lastBlockSize = blockSize; 
    int lastBlockOffset = totalInput.length - lastBlockSize; 
    // Step through the array. 
    int outputLength = 0; 
    for (int i = 0; i < lastBlockOffset; i += blockSize) 
      outputLength += engineTransformBlock(totalInput, i, blockSize, 
          output, outputOffset + outputLength); 

The final partial or full block is transformed using engineTransformBlockFinal(). Subclasses 
should implement padding in this method. 

    // Transform the final partial or full block. 
    outputLength += engineTransformBlockFinal(totalInput, lastBlockOffset, 
 
 
 
       lastBlockSize, output, outputOffset + outputLength); 
    return outputLength; 
  } 
} 

This might seem like a lot of work, and little to show for it, but BlockCipher will come in handy in the 
next section, when we develop a CBC mode class. You'll see BlockCipher again in Chapter 9 when I 
present an implementation of the ElGamal cipher algorithm.  
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7.7.3 CBCWrapper 

We can implement CBC mode on top of any existing block cipher. We'll write a CBCWrapper class that 
works just like any other cipher but uses an underlying block cipher to do its work. It's analagous to 
the way a FilterOutputStream wraps around an OutputStream and adds functionality. 

Let's start by making a subclass of BlockCipher (presented in the last section) and putting it in the 
oreilly.jonathan.crypto package. 

package oreilly.jonathan.crypto; 
 
import java.security.*; 
import java.security.spec.*; 
 
import javax.crypto.*; 
import javax.crypto.spec.*; 
 
public class CBCWrapper 
    extends BlockCipher { 

Member variables are used to keep track of the state of the cipher, the underlying block cipher, and 
the internal CBC buffer. This buffer is initially filled with the IV. 

  protected int mState; 
  protected Cipher mWrappedCipher; 
  protected byte[] mBuffer; 

The no-argument constructor constructs a CBCWrapper with an underlying DES block cipher: 

  public CBCWrapper() 
      throws NoSuchAlgorithmException, NoSuchPaddingException { 
    // Default to DES. 
    this(Cipher.getInstance("DES/ECB/NoPadding")); 
  } 
 
  protected CBCWrapper(Cipher wrapped) { mWrappedCipher = wrapped; } 

CBCWrapper implements CBC mode and PKCS#5 padding. Any attempt to set a different mode or 
padding scheme will cause an exception to be thrown: 

  protected void engineSetMode(String mode) 
      throws NoSuchAlgorithmException { 
    throw new NoSuchAlgorithmException("CBCWrapper supports no modes."); 
  } 
   
  protected void engineSetPadding(String padding) 
      throws NoSuchPaddingException { 
    throw new NoSuchPaddingException("CBCWrapper supports no padding."); 
  } 

The block size of the CBCWrapper is determined by the block size of the underlying cipher: 

  protected int engineGetBlockSize() { 
    return mWrappedCipher.getBlockSize(); 
  } 

The engineGetOutputSize() method calculates the output data size for a given input data size. If the 
CBCWrapper is encrypting data, for example, this method figures out how long the ciphertext will be 
for a given plaintext length. Because we are implementing PKCS#5 padding, this method always 
returns a length that is a multiple of the block size. If we are encrypting data, and the length of the 
input data happens to be an integral number of blocks, we need to add an entire block of padding. 
When we decrypt, the decrypted data will always be shorter than the ciphertext, due to the removal of 
the padding. However, we won't know how much shorter it will be, so our engineOutBufferSize() 
method returns the input length when the cipher is decrypting. Note that the input length is the sum 
of the supplied input length and the length of the internally buffered data, returned by calling 
getBufferedDataLength() . This method is inherited from BlockCipher, CBCWrapper's superclass. 

  protected int engineGetOutputSize(int inLen) { 
    int blockSize = mWrappedCipher.getBlockSize(); 
    int length = inLen + getBufferedDataLength(); 
    int blocks = (length + blockSize - 1) / blockSize; 
    if (mState == Cipher.ENCRYPT_MODE && length % blockSize == 0) 
      blocks++; 
    return blockSize * blocks; 
  } 
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getIV() returns a copy of the internal CBC buffer. Note that, strictly speaking, this is not equal to the 
original IV after some encryption or decryption has been done. 

protected byte[] engineGetIV() { return (byte[])(mBuffer.clone()); } 

When a CBCWrapper is initialized, it passes the given key to the underlying block cipher. A new 
internal buffer is created that is the same size as the underlying cipher's block size. It is filled with 
random data from the supplied SecureRandom: 

  protected void engineInit(int opmode, Key key, SecureRandom random) 
      throws InvalidKeyException { 
    try { engineInit(opmode, key, null, random); } 
    catch (InvalidAlgorithmParameterException iape) {} 
    mBuffer = new byte[mWrappedCipher.getBlockSize()]; 
    random.nextBytes(mBuffer); 
  } 

If an IvParameterSpec object is passed to init(), the IV is extracted from it: 

  protected void engineInit(int opmode, Key key, 
      AlgorithmParameterSpec params, SecureRandom random) 
      throws InvalidKeyException, InvalidAlgorithmParameterException { 
    mState = opmode; 
    mWrappedCipher.init(opmode, key, random); 
    if (params != null) { 
      if (params instanceof IvParameterSpec) { 
        IvParameterSpec spec = (IvParameterSpec)params; 
        mBuffer = (byte[])(spec.getIV().clone()); 
      } 
      else throw new InvalidAlgorithmParameterException(); 
    } 
  } 

To transform a block, we simply check if we're encrypting or decrypting and call the appropriate 
method. The guts of the CBC algorithm are contained in the encryptBlock() and decryptBlock() 
methods, which are presented next: 

  protected int engineTransformBlock(byte[] input, 
      int inputOffset, int inputLength, byte[] output, int outputOffset) 
      throws ShortBufferException { 
    if (mState == Cipher.ENCRYPT_MODE) 
      return encryptBlock(input, inputOffset, inputLength, 
          output, outputOffset); 
    else if (mState == Cipher.DECRYPT_MODE) 
      return decryptBlock(input, inputOffset, inputLength, 
          output, outputOffset); 
    return 0; 
  } 

In engineTransformBlockFinal() , we need to add padding if we're encrypting or remove padding if 
we're decrypting. If we're encrypting and the input data is a multiple of the block size, then a full block 
of padding must be added. 

  protected int engineTransformBlockFinal(byte[] input, 
      int inputOffset, int inputLength, byte[] output, int outputOffset) 
      throws ShortBufferException { 
    int blockSize = mWrappedCipher.getBlockSize(); 
    if (mState == Cipher.ENCRYPT_MODE) { 
      if (inputLength == blockSize) { 
        byte[] result = new byte[blockSize * 2]; 
        int length = encryptBlock(input, inputOffset, inputLength, 
            output, outputOffset); 
        byte[] paddingBlock = pad(null, 0, 0); 
        length += encryptBlock(paddingBlock, 0, blockSize, 
            output, outputOffset + length); 
        return length; 
      } 

Otherwise, an incomplete block should be padded and encrypted: 

      byte[] paddedBlock; 
      paddedBlock = pad(input, inputOffset, inputLength); 
      return encryptBlock(paddedBlock, 0, blockSize, 
          output, outputOffset); 
    } 
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To decrypt ciphertext, we simply pass block-sized chunks to the underlying cipher for decryption and 
XOR the results with the internal buffer. This is accomplished in the decryptBlock() method. Once 
the data is decrypted, we have to remove the PKCS#5 padding that we added earlier. To do this, we 
pull off the last byte of decrypted data. This byte should contain the number of padding bytes that 
were added. We subtract this value from the original data length, yielding the correct length of the 
decrypted data. This length is returned from engineTrans-formBlockFinal(). 

    else if (mState == Cipher.DECRYPT_MODE) { 
      int length = decryptBlock(input, inputOffset, inputLength, 
          output, outputOffset); 
      int paddingLength = (int)output[outputOffset + length - 1]; 
      return length - paddingLength; 
    } 
    return 0; 
  } 

Now I have some gritty details to explain. First, the pad() method takes an incomplete block and 
returns a padded block. It implements the padding described in PKCS#5. A call to pad(null, 0, 0) 
returns a full block of padding (in a 64-bit block, 8 bytes with the value 8). 

protected byte[] pad(byte[] in, int inOff, int inLen) { 
    int blockSize = mWrappedCipher.getBlockSize(); 
    byte[] paddedBlock = new byte[blockSize]; 
    if (in != null) 
      System.arraycopy(in, inOff, paddedBlock, 0, inLen); 
    for (int i = inLen; i < blockSize; i++) 
      paddedBlock[i] = (byte)(blockSize - inLen); 
    return paddedBlock; 
  } 

It's in the encryptBlock() and decryptBlock() that the CBC magic really happens. In 
encryptBlock(), we begin by XORing the plaintext block with the internal buffer. The buffer holds 
the IV initially and thereafter holds ciphertext to be combined with the next block of plaintext. 

  protected int encryptBlock(byte[] in, int inOff, int inLen, 
       byte[] out, int outOff) { 
    // XOR plaintext with mBuffer 
    int blockSize = mWrappedCipher.getBlockSize(); 
    byte[] amalgam = new byte[blockSize]; 
    for (int i = 0; i < blockSize; i++) 
      amalgam[i] = (byte)(in[inOff + i] ^ mBuffer[i]); 

Then we encrypt the result of the XOR. The ciphertext is placed in both the output array and the 
internal buffer, to be used with the next encryption: 

    // encrypt block 
    byte[] ciphertext = null; 
    try { ciphertext = mWrappedCipher.doFinal(amalgam); } 
    catch (IllegalBlockSizeException ibse) {} 
    catch (BadPaddingException bpe) {} 
    System.arraycopy(ciphertext, 0, out, outOff, blockSize); 
    // put ciphertext in mBuffer 
    System.arraycopy(ciphertext, 0, mBuffer, 0, blockSize); 
    return blockSize; 
  } 

The decryptBlock() method works in much the same way, except that it reverses the encryption 
process. First, we decrypt a block of ciphertext: 

  protected int decryptBlock(byte[] in, int inOff, int inLen, 
      byte[] out, int outOff) { 
    // decrypt block 
    int blockSize = mWrappedCipher.getBlockSize(); 
    byte[] ciphertext = new byte[blockSize]; 
    System.arraycopy(in, inOff, ciphertext, 0, blockSize); 
    byte[] amalgam = null; 
    try { amalgam = mWrappedCipher.doFinal(ciphertext); } 
    catch (IllegalBlockSizeException ibse) {} 
    catch (BadPaddingException bpe) {} 
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This done, we XOR the decrypted data with the internal buffer, which produces plaintext. Then the 
ciphertext block is copied into the internal buffer to be used in the next decryption: 

    // XOR amalgam with mBuffer 
    for (int i = 0; i < blockSize; i++) 
      out[outOff + i] = (byte)(amalgam[i] ^ mBuffer[i]); 
    // put ciphertext in mBuffer 
    System.arraycopy(ciphertext, 0, mBuffer, 0, blockSize); 
    return blockSize; 
  } 
} 

You can't test the CBCWrapper class directly. In Chapter 9, you'll see how to make it part of your own 
cryptographic provider. 

Although CBCWrapper's default constructor creates an underlying DES cipher, you can easily create a 
subclass of CBCWrapper for any underlying block cipher algorithm. Suppose you had a provider 
installed that supports the IDEA algorithm. You could create a class that implements IDEA in CBC 
mode with PKCS#5 padding as follows: 

package oreilly.jonathan.crypto; 
 
import java.security.*; 
import javax.crypto.*; 
 
public class IDEACBCPKCS5 
    extends CBCWrapper { 
  public IDEACBCPKCS5() 
      throws NoSuchAlgorithmException, NoSuchPaddingException { 
    super(Cipher.getInstance("IDEA/ECB/NoPadding")); 
  } 
} 

Then you could configure your provider to use this class in response to requests for 
"IDEA/CBC/PKCS5Padding." The IDEACBCPKCS5 class would act like an IDEA cipher in CBC mode, 
using the IDEA/ECB/NoPadding cipher as the underlying cipher.  

7.7.4 CFBWrapper 

Like CBC mode , eight-bit CFB mode can be implemented in a class that wraps a regular block cipher. 
With this in mind, we'll develop the CFBWrapper class. We'll make it a subclass of CipherSpi and put 
it in the oreilly.jonathan.security package. It looks a lot like the CBCWrapper class from before, 
but the inner workings are a little different. Any cipher in eight-bit CFB mode encrypts one byte at a 
time. Although you might be tempted to make this class a child of BlockCipher, it's more efficient to 
have it descend directly from CipherSpi: 

package oreilly.jonathan.crypto; 
 
import java.security.*; 
import java.security.spec.*; 
 
import javax.crypto.*; 
import javax.crypto.spec.*; 
 
public class CFBWrapper 
    extends CipherSpi { 

Internally, CFB mode uses a block cipher and a block-sized buffer. We'll represent these as member 
variables. The mState variable keeps track of the cipher's state, either ENCRYPT_MODE or 
DECRYPT_MODE. 

  protected int mState; 
  protected Cipher mWrappedCipher; 
  protected byte[] mBuffer; 

As before, we provide a no-argument constructor that creates a default CFBWrapper with an 
underlying DES cipher: 

  public CFBWrapper() 
      throws NoSuchAlgorithmException, NoSuchPaddingException { 
    // Default to DES. 
    this(Cipher.getInstance("DES/ECB/NoPadding")); 
  } 
 
  protected CFBWrapper(Cipher wrapped) { mWrappedCipher = wrapped; } 
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As with CBCWrapper, the CFBWrapper class supports no additional modes or padding schemes: 

  protected void engineSetMode(String mode) 
      throws NoSuchAlgorithmException { 
    throw new NoSuchAlgorithmException("CFBWrapper supports no modes."); 
  } 
   
  protected void engineSetPadding(String padding) 
      throws NoSuchPaddingException { 
 
 
    throw new NoSuchPaddingException("CFBWrapper supports no padding."); 
  } 

The engineGetBlockSize() method returns the block size, in bytes, of this cipher. Because the 
CFBWrapper class acts like a stream cipher, it encrypts one byte at a time: 

protected int engineGetBlockSize() { return 1; } 

For CFBWrapper, the output length of an encryption or decryption is always equal to the input length: 

  protected int engineGetOutputSize(int inLen) { return inLen; } 
 
  protected byte[] engineGetIV() { return (byte[])(mBuffer.clone()); } 

Like CBCWrapper, CFBWrapper is a cipher wrapper. When you call init(), CFB passes the key to the 
underlying cipher and clears the internal buffer: 

  protected void engineInit(int opmode, Key key, SecureRandom random) 
      throws InvalidKeyException { 
    try { engineInit(opmode, key, null, random); } 
    catch (InvalidAlgorithmParameterException iape) {} 
    mBuffer = new byte[mWrappedCipher.getBlockSize()]; 
    random.nextBytes(mBuffer); 
  } 

The underlying block cipher is always initialized for encryption, regardless of whether this 
CFBWrapper will be encrypting or decrypting. As before, we extract an IV if it is passed to us: 

  protected void engineInit(int opmode, Key key, 
      AlgorithmParameterSpec params, SecureRandom random) 
      throws InvalidKeyException, InvalidAlgorithmParameterException { 
    mState = opmode; 
    mWrappedCipher.init(Cipher.ENCRYPT_MODE, key); 
    if (params != null) { 
      if (params instanceof IvParameterSpec) { 
        IvParameterSpec spec = (IvParameterSpec)params; 
        mBuffer = (byte[])(spec.getIV().clone()); 
      } 
      else throw new InvalidAlgorithmParameterException(); 
    } 
  } 

The first overloaded engineUpdate() calls the second version of the method: 

  protected byte[] engineUpdate(byte[] input, int inputOffset, 
      int inputLen) { 
    byte[] out = new byte[inputLen]; 
    try { engineUpdate(input, inputOffset, inputLen, out, 0); } 
    catch (ShortBufferException sbe) {} 
    return out; 
  } 

In CFB mode, we have no worries about block buffering or padding. engineUpdate(), therefore, calls 
engineDoFinal() directly: 

  protected int engineUpdate(byte[] input, int inputOffset, int inputLen, 
      byte[] output, int outputOffset) throws ShortBufferException { 
    int length = 0; 
    try { length = engineDoFinal(input, inputOffset, inputLen, 
        output, outputOffset); } 
    catch (IllegalBlockSizeException ibse) {} 
    catch (BadPaddingException bpe) {} 
    return length; 
  } 
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As before, the first overloaded engineDoFinal() calls the second overloaded version: 

  protected byte[] engineDoFinal(byte[] input, int inputOffset, 
      int inputLen) throws IllegalBlockSizeException, BadPaddingException { 
    byte[] out = new byte[inputLen]; 
    try { engineDoFinal(input, inputOffset, inputLen, out, 0); } 
    catch (ShortBufferException sbe) {} 
    return out; 
  } 

In engineDoFinal(), we encrypt or decrypt each byte of input, one at a time, using the 
encryptByte() and decryptByte() methods: 

  protected int engineDoFinal(byte[] input, int inputOffset, int inputLen, 
      byte[] output, int outputOffset) throws ShortBufferException, 
      IllegalBlockSizeException, BadPaddingException { 
    for (int i = 0; i < inputLen; i++) { 
      if (mState == Cipher.ENCRYPT_MODE) 
        output[outputOffset + i] = encryptByte(input[inputOffset + i]); 
      else 
        output[outputOffset + i] = decryptByte(input[inputOffset + i]); 
    } 
    return inputLen; 
  } 

The encryptByte() and decryptByte() methods implement the meat of the CFB mode algorithm. In 
encryptByte(), we first encrypt the internal buffer: 

  protected byte encryptByte(byte p) { 
    int blockSize = mWrappedCipher.getBlockSize(); 
    byte[] encryptedBlock = null; 
    try { encryptedBlock = mWrappedCipher.doFinal(mBuffer); } 
    catch (IllegalBlockSizeException ibse) {} 
    catch (BadPaddingException bpe) {} 

Then we XOR the leftmost byte of the buffer with the incoming plaintext byte: 

    byte left = encryptedBlock[0]; 
    byte c = (byte)(p ^ left); 

Finally, we shift the buffer and return the ciphertext byte: 

    shiftBuffer(c); 
    return c; 
  } 

Decryption is much the same, except the plaintext is recovered by XORing the ciphertext and the 
leftmost byte of the buffer: 

  protected byte decryptByte(byte c) { 
    byte[] encryptedBlock = null; 
    try { encryptedBlock = mWrappedCipher.doFinal(mBuffer); } 
    catch (IllegalBlockSizeException ibse) {} 
    catch (BadPaddingException bpe) {} 
    byte left = encryptedBlock[0]; 
    byte p = (byte)(c ^ left); 
    shiftBuffer(c); 
    return p; 
  } 

The last method in CFB, shiftBuffer() , is used to shift the buffer left one byte: 

  protected void shiftBuffer(byte fill) { 
    for (int i = 0; i < mBuffer.length - 1; i++) 
      mBuffer[i] = mBuffer[i + 1]; 
    mBuffer[mBuffer.length - 1] = fill; 
 
  } 
 
} 
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7.8 Hybrid Systems 

Hybrid systems combine the strengths of symmetric and asymmetric ciphers. In a hybrid system, an 
asymmetric cipher is used for authentication and data integrity, and a symmetric cipher is used for 
confidentiality. Symmetric ciphers are faster than asymmetric ciphers, so it makes sense to use 
symmetric ciphers for most of a message or conversation. Likewise, asymmetric ciphers are well 
suited to authentication and session key exchange. 

You can "roll your own" hybrid system, as I'll demonstrate in Chapter 10 and Chapter 11. Here I'll 
discuss the most widespread hybrid standards. 

7.8.1 PGP 

Pretty Good Privacy (PGP) is a piece of software that was designed to bring strong cryptography to the 
masses. It encrypts messages, using a combination of symmetric and asymmetric ciphers. Encrypted 
messages can then be safely transported over an insecure network, like the Internet. Another user 
with PGP can then decrypt the messages. PGP provides authentication, data integrity, and 
confidentiality. 

PGP contains no startling cryptographic innovations; it uses well-known, off-the-shelf cryptographic 
algorithms. It is important because it is a de facto standard. The last widely distributed version is PGP 
2.6.2, which uses RSA for signing and key exchange and IDEA for message encryption. PGP 5.0 is the 
latest version, released in August 1997; it supports additional algorithms for signing and encryption. 

The Cryptix toolkit includes some support for PGP; for more information, see : 

http://www.systemics.com/software/cryptix-java/. 

7.8.2 S/MIME 

Secure/Multipurpose Internet Mail Extensions (S/MIME) is a proposed standard for 
cryptographically enhanced email. It is a hybrid system that places an encrypted message in a "digital 
envelope." The message itself is encrypted using a symmetric cipher, while the session key for the 
symmetric cipher is encrypted using an asymmetric cipher. X.509 certificates are used for 
authentication. Signatures protect the integrity of the message and its envelope. 

S/MIME is the darling of RSA Data Security, Inc., and it is endorsed by an impressive array of 
vendors, including Netscape and Microsoft. The standard is built on a handful of other standards, 
including MIME, PKCS#7, PKCS#10, and X.509. You can read more about it at 
http://www.rsa.com/smime/. 

7.8.3 SSL 

The Secure Sockets Layer (SSL) is a standard developed by Netscape Communications, Inc., to allow 
for secure communications between network clients and servers.[8] While PGP is oriented around 
messages, where encryption and transmission are separate steps, SSL is designed for conversations, 
where encryption and transmission occur simultaneously. SSL support is built into popular web 
browsers like Netscape's Navigator and Communicator and Microsoft's Internet Explorer. If you've 
ever visited a page whose URL began with https instead of http, you've already used SSL; https means 
the HTTP protocol on top of SSL. SSL can authenticate each side of the communication, using public 
key certificates. SSL communications are confidential as well, through the use of a session key and a 
symmetric cipher. Finally, SSL ensures data integrity so that an attacker cannot replay part of a 
conversation or change data in transit. 

[8] SSL is documented at http://home.netscape.com/assist/security/ssl/protocol.html. 

An SSL conversation has distinct stages, as illustrated in Figure 7.4. Each side of the conversation has 
the opportunity to authenticate itself to the other side, using X.509 certificates. Then they negotiate a 
cipher suite, which specifies the symmetric and asymmetric algorithms that will be used in the SSL 
conversation. A public key algorithm is used for session key exchange, and the remainder of the 
conversation is encrypted using a symmetric cipher. The cipher suite can be changed at any time 
during the conversation. 

http://www.systemics.com/software/cryptix-java/
http://www.rsa.com/smime/
http://home.netscape.com/assist/security/ssl/protocol.html
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Figure 7.4. SSL conversation 

 

7.8.3.1 Sources 

Several pieces of software from Sun support SSL. If you're interested in getting the SSL classes 
separately, contact Sun directly. Table 7.4 summarizes the packages that include SSL support. As this 
book goes to press, Sun is planning to release the SSL classes as a standard extension library. You can 
see documentation for these classes at http://java.sun.com/security/ssl/API_users_guide.html. 

Table 7.4, Sun's SSL Class 

Package Location 

HotJava Browser 1.1 http://java.sun.com/products/hotjava/1.1/ 

Java Server Toolkit http://java.sun.com/products/java-server/toolkit/ 

Java Electronic Commerce Framework http://java.sun.com/products/commerce/ 

 
There are a few third-party Java SSL implementations available as well. These are shown in Table 7.5. 

Table 7.5, Third-Party Java SSL Implementations 

Package Location 

JCP SSL http://www.jcp.co.uk/ 

Baltimore Technologies J/SSL http://www.baltimore.ie/jssl/ 

Phaos Technology SSLava http://www.phaos.com/products/sslavafr.htm 

IAIK iSaSiLk http://www.jce.iaik.tu-graz.ac.at/iSaSiLk/isasilk.htm 

 

http://java.sun.com/security/ssl/API_users_guide.html
http://java.sun.com/products/hotjava/1.1/
http://java.sun.com/products/java-server/toolkit/
http://java.sun.com/products/commerce/
http://www.jcp.co.uk/
http://www.baltimore.ie/jssl/
http://www.phaos.com/products/sslavafr.htm
http://www.jce.iaik.tu-graz.ac.at/iSaSiLk/isasilk.htm


Java Cryptography 

 page 118

7.8.3.2 Using the browser 

Another way to use SSL in Java is from an applet. Basically, you use a java.net.URL object to open an 
HTTPS URL. This allows you to retrieve web pages and other resources securely, using your browser's 
HTTPS implementation. Your applet needs to know nothing about SSL except that it opens https: 
URLs instead of http: URLs. For example, you might normally write something like this: 

URL u = new URL("http://www.verisign.com/"); 
DataInputStream theHTML = new DataInputStream(u.openStream()); 
... 

Instead, you could write this: 

URL u = new URL("https://www.verisign.com/"); 
DataInputStream theHTML = new DataInputStream(u.openStream()); 
... 

Although the simplicity of this approach is alluring, it has two serious drawbacks. First, SSL 
implementations vary from browser to browser. And even if the browser itself supports HTTPS, it may 
not support this feature in its JVM. Unless you are developing applets for a single type of browser, you 
shouldn't expect to open https: URLs and have them work every time. 

Second, the applet sandbox constrains applets to make network connections only to the host they 
came from. Even if the browser supports SSL from Java, your applet will be able to make an SSL 
connection only back to its home server.[9]  

[9] You could work around this restriction with a signed applet, as I'll discuss in Chapter 8. You'll be fighting an 
uphill battle, however, against both the platform dependencies of HTTPS and the platform dependencies of 
signed applets. Another approach might be better for your health and sanity. 

7.8.4 SET 

The Secure Electronic Transaction (SET) protocol was developed by VISA and Mastercard to 
encourage electronic commerce. In theory, it works like SSL. In implementation, the systems are quite 
different. For example, SET uses two public key pairs, one for authentication and one for session key 
exchange. For more information on SET, see http://www.mastercard.com/set/ or 
http://www.visa.com/cgi-bin/vee/nt/ecomm/set/downloads.html?2+0. 

The Java Electronic Commerce Framework (JECF) includes support for SET. Because the JECF is still 
in early releases, it's very possible that its SET support will change before the first official release. For 
more information, refer to the JECF web pages at http://java.sun.com/products/commerce/.  

http://www.verisign.com/
https://www.verisign.com/
http://www.mastercard.com/set/
http://www.visa.com/cgi-bin/vee/nt/ecomm/set/downloads.html?2+0
http://java.sun.com/products/commerce/


Java Cryptography 

 page 119

Chapter 8. Signed Applets 
Signed applets are a Java 1.1 innovation. A signed applet is a cryptographically signed collection of 
class files and other supporting files, like graphic or sound files. Signed applets are exciting because 
they can step outside the restrictive applet sandbox of the Java 1.0 world. This means they can do 
more interesting and useful work than before, like writing and reading disk files and opening network 
connections to arbitrary hosts. 

In theory, a signed applet works like this: 

1. A software developer (let's say Josephine) obtains a certificate from a trusted Certificate 
Authority (CA), like VeriSign. The CA takes some trouble to verify Josephine's identity before 
issuing her a certificate. 

2. While cruising the Web, you happen to browse to a page that contains an applet Josephine has 
written. She has cryptographically signed it using her private key. Your browser tells you that 
the applet is signed by Josephine and asks if the applet should be allowed to step outside the 
sandbox. 

Why should this make you feel safe executing the applet? 

• Because the applet is signed, you know it hasn't been modified by a malicious third party. 

• Because Josephine's identity is vouched for by a CA, who signed her certificate, you can have 
some assurance that Josephine is who she says she is. 

Currently, signed applets are stubborn and complex beasts. Three popular browsers (Sun's HotJava™, 
Netscape's Navigator, and Microsoft's Internet Explorer) support signed applets, but each browser has 
a different applet archive format and different procedures for signing applets. In Netscape Navigator 
and Microsoft Internet Explorer, the situation is further clouded by interactions with certificate 
authorities like VeriSign. 

Each browser uses a different scheme for signing, mostly because there is no standard certificate 
database on the client's machine. When a signed applet is downloaded, its signature is verified using 
the signer's public key. The signer's public key is contained in a certificate that accompanies the 
applet. Each browser has its own internal certificate database. 

Quite apart from incompatible processes and formats, signed applets are hard to use because the 
technology isn't mature. This is a nice way of saying that there are a lot of bugs left in the development 
tools. 

In this section, I'll describe how to create and run a signed applet for HotJava 1.0 from Javasoft, 
Netscape Navigator 4.01, and Microsoft Internet Explorer 4.0. I'll concentrate on the details of 
packaging and signing your applet although I'll also cover browser configuration briefly. I won't spend 
a lot of time on the details of each vendor's tools and browsers; instead, this chapter serves as a quick 
start for producing signed applets on these three browser platforms. 

I'll begin by introducing a simple applet, Renegade, that attempts to step outside the applet sandbox. 
Then I'll show how to sign the applet for the three browsers.  
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8.1 Renegade 

For all three browsers, we'll use the same applet, called Renegade. Renegade isn't really dangerous, 
but it does try to find out your name, using System.getProperty("user.name"). This action is not 
allowed in the applet sandbox, to protect the privacy of the user. In Renegade, we enclose this call in a 
try block in case a SecurityException is thrown. Save the source code for this class in 
Renegade.java. 

import java.applet.*; 
import java.awt.*; 
 
public class Renegade extends Applet { 
  private String mMessage; 
 
  public void init() { 
    try { 
      mMessage = "Your name is " + System.getProperty("user.name") + "."; 
    } 
    catch (SecurityException e) { 
      mMessage = "Can't get your name, due to a SecurityException."; 
    } 
  } 
 
  public void paint(Graphics g) { 
    g.drawString("Renegade", 25, 25); 
    g.drawString(mMessage, 25, 50); 
  } 
} 

The HTML page that contains this applet, Renegade.html, is as follows: 

<html> 
<head> 
</head> 
<body> 
  <applet code = Renegade width = 300 height = 200></applet> 
</body> 
</html> 

If you point your browser at this applet, the call to System.getProperty() fails, just as we expected. 
Figure 8.1 shows this applet in Navigator 4.01. 

Figure 8.1. The unsigned Renegade applet can't get out of the sandbox 

 

8.2 HotJava 

The simplest case is for HotJava, just because it was developed by the same people who brought you 
the Security API. HotJava recognizes applets archived in JAR files. (See Appendix C, for a description 
of the jar tool.) As discussed in Appendix D, you can use javakey to sign a JAR using one of the 
identities that's defined in the javakey database. HotJava recognizes the signed JAR and allows you 
to define a security policy for the signer. 
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A security policy is a set of rules for a particular signer. For example, I might have the following 
security policy defined for applets signed by Josephine: 

• Applets can access the user.name system property. 

• Applets can write files to the local disk in the c:\temp directory. 

• Applets can make network connections to www.josephine.com. 

HotJava allows you to define this kind of fine-grained security policy for different signers. We'll take a 
peek at this feature a little later. 

For HotJava, then, creating a signed applet follows three steps: 

1. Prepare a signer. 

2. Bundle up the applet. 

3. Sign the applet.  

8.2.1 Prepare a Signer 

You can use javakey to create a signer and generate keys for it. Refer to Appendix D if you're not sure 
how to do this. Marian will be the signer for the Renegade applet. We'll use her self-signed certificate 
to sign the applet. 

If you didn't install Marian as a signer, do it now. First, create Marian in the javakey database: 

C:\ javakey -cs Marian true 
Created identity [Signer]Marian[identitydb.obj][trusted] 

Generate a set of keys for Marian like this: 

C:\ javakey -gk Marian DSA 1024 
Generated DSA keys for Marian (strength: 1024). 

Now we need to generate Marian's self-signed certificate. First, create a certificate directive file, 
MarianCertificate.directive, with the following contents: 

issuer.name=Marian 
 
subject.name=Marian 
subject.real.name=Maid Marian 
subject.org.unit=Overprotected Daughters 
subject.org=Royal Castle 
subject.country=England 
 
start.date=06 February 1998 
end.date=31 December 1998 
serial.number=1001 
 
signature.algorithm=DSA 
 
out.file=Marian.certificate 

Generate the certificate as follows, using the -gc option: 

C:\ javakey -gc MarianCertificate.directive 
Generated certificate from directive file MarianCertificate.directive. 

At this point, Marian is a signer with a key pair and a self-signed certificate. In a more realistic 
scenario, you would have a certificate from a CA, vouching for Marian's identity. Self-signed 
certificates are not very trustworthy. I use them in this example for demonstration purposes only. 

Unfortunately , JDK 1.1 doesn't provide tools to interact with CAs to produce "real" certificates. In 
JDK 1.2, javakey is replaced by keytool and jarsigner. keytool has a facility for generating 
certificate requests for a CA, as described in Chapter 5. 
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In JDK 1.2, javakey no longer exists. A new tool, jarsigner, is used to 
sign JARs using key information from a keystore. The keystore can be 
managed with keytool. As of JDK 1.2 beta2, however, the signed JARs 
produced by jarsigner don't work with HotJava 1.0 or HotJava 1.1; the 
browser simply treats the JAR like a regular, unsigned archive. 

 

 
8.2.2 Bundle the Applet 

HotJava recognizes JAR files, which are created using the jar tool. Our applet contains only one file, 
so we can create the JAR using the following command: 

jar -cf Renegade.jar Renegade.class 

This takes Renegade.class and puts it in a new JAR called Renegade.jar. 

8.2.3 Sign the Applet 

We'll use the javakey tool to sign the JAR, as described in Appendix D. The directive file should look 
like this: 

signer=Marian 
cert=1 
chain=0 
signature.file=MARIANSG 
out.file=hjRenegade.jar 

Save this in a file called MarianSign.directive. Then you can sign the JAR using the following 
command: 

javakey  
-gs MarianSign.directive Renegade.jar 

The JAR is signed with Marian's private key, and the resulting signed JAR is hjRenegade.jar. 

8.2.4 Test the Applet 

To run the applet, we need an HTML page that references the signed JAR we just created. This file, 
hjRenegade.html, is shown here. 

<html> 
<head> 
</head> 
<body> 
  <applet code = Renegade.class archive = hjRenegade.jar 
      width = 400 height = 200></applet> 
</body> 
</html> 

If Renegade.class and hjRenegade.jar are both present in the directory with this HTML file, HotJava 
will use Renegade.class, the unsigned version of the applet class. To avoid this, remove 
Renegade.class from the directory containing the HTML and JAR files. 

Now run HotJava and point it at the hjRenegade.html page. HotJava asks for permission, on the 
applet's behalf, to access the user.name property. This is shown in Figure 8.2. 

If you allow the action, the applet is then displayed in all of its glory.[1] HotJava remembers that you 
have granted this permission for the remainder of your session. 

[1] If you are using Windows 95, the user.name property may return "unknown," depending on how 
Windows 95 is set up. Nevertheless, it demonstrates that the applet was permitted to call 
System.getProperty() - and no SecurityException was thrown. 
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Figure 8.2. HotJava asks for permission 

 

 
8.2.5 Set Up the Browser 

There is a way to make permissions more permanent in HotJava. In particular, we can grant a specific 
set of permissions to a signer. Any signed applets that HotJava encounters will automatically be given 
the permissions of the signer. 

To enable this, proceed to Edit → Preferences → Applet Security in the HotJava menu. Then 
choose the link to the Advanced Security Settings page. Marian's certificate should show up in the list 
box. To apply specific permissions to Marian, you'll first need to verify her certificate. Click on the 
Verify button to do this. Then click OK. Below the list box area, you'll now be able to choose specific 
permissions for Marian. Figure 8.3 shows the Advanced Security Settings after Marian's certificate has 
been verified.[2] 

[2] There's a peculiar bug in HotJava 1.0. If you've already visited the security settings pages of HotJava, before 
viewing the signed applet, then Marian's certificate won't show up in the Advanced Security Settings page, even 
after you view the page with the signed applet. The sequence of events that works is (a) start HotJava, (b) view 
the signed applet page, and (c) view the certificate in the Advanced Security Settings page. 

Applets signed by Marian get default permissions. To assign specific permissions, first uncheck Use 
default permissions for this site or certificate. For example, for Marian you might check 
Applet may access all properties instead. Next time you run HotJava and the signed Renegade 
applet, you won't be prompted with a permission question. 

We glossed over verifying the certificate signature, blithely stating that the certificate was verified and 
you should go ahead and mark it as such. HotJava is reluctant to accept a self-signed certificate, so it 
asks you to perform additional verification. The idea is that you will talk to the certificate owner, in 
person, and verify that the certificate signature is correct by reading the numbers off. Note that this 
applies only to a self-signed certificate. Having verified Marian's certificate, any other certificates 
signed by Marian are automatically verified. 

In a more perfect world, Marian's signed applet would be accompanied by a "real" certificate, issued 
by a CA, instead of Marian's self-signed certificate. In JDK 1.1, however, there are no tools for 
generating real certificates. In JDK 1.2, keytool includes facilities for requesting a certificate from a 
CA. The signed archives produced by jarsigner, however, do not yet work with HotJava.  
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Figure 8.3. HotJava Advanced Security Settings 

 

8.3 Navigator 

The steps involved in creating a signed applet are similar for other browsers. It's the details of each 
step that differ severely. Netscape Navigator also recognizes JAR files, but it can't recognize signatures 
produced by javakey. Similarly, HotJava is unable to recognize signatures intended for Navigator. 

8.3.1 Prepare a Signer 

To sign an applet for Navigator, you must have an appropriate signing certificate in Navigator's 
database. You can purchase such a certificate from a Certificate Authority (CA). I bought a "Class 2 
Digital ID" from VeriSign (see http://www.verisign.com/) for $19.95. I can use this certificate to sign 
code; it lasts for one year. You should be aware that VeriSign isn't the only game in town. There are 
plenty of CAs in the world. I just used VeriSign because they've made it convenient to buy certificates 
on the Web. VeriSign has streamlined the process of getting a certificate; it's fairly easy to give them 
your 20 bucks and get a certificate in return. Behind this simple process is a lot of legal 
documentation. If you're serious about using your certificate, you should read all of it. 

VeriSign offers two classes of certificates for code signing : 

• Class 2 certificates, for individual software developers, cost $20 per year. VeriSign does some 
quick automated checks on the information you give them and can issue a certificate within 
five minutes of receiving your information. 

• Class 3 certificates, for software development companies, cost $400 per year. VeriSign 
requires more information and checks more carefully for these types of certificates. 

http://www.verisign.com/
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To sign code for Navigator, I bought a Class 2 certificate. To do this yourself, start at the VeriSign 
home page, http://www.verisign.com/. Follow the instructions about how to enroll for a certificate. 
When I followed this process, Navigator generated a key pair for me and sent the public key to 
VeriSign. After a few minutes, VeriSign sent me email, giving me a URL to use to pick up my 
certificate. The certificate was downloaded to Navigator, which stored it in a private certificate 
database along with my private key from before. Netscape's signing tool, zigbert, is able to access this 
certificate database to sign code. I'd like to detail the process, but VeriSign changes it frequently 
enough that anything I told you would probably be out of date by the time this book is printed. 

There is a way to test signed applets in Navigator without paying for a certificate, using something 
Netscape calls codebase trust. You can read more about this at : 

http://developer.netscape.com/library/technote/security/sectn2.html.  

8.3.2 Ask for Permission 

HotJava was able to run the Renegade applet without modification. It's a different story in Netscape 
Navigator. Even if your applet is signed, Navigator won't let you perform security-sensitive operations 
without asking permission first. Before stepping outside the sandbox, your applet needs to ask if it's 
allowed. Netscape calls this system the Capabilities API. It works like this: 

1. Your signed applet uses the Capabilities API to ask Navigator for permission to do something 
potentially dangerous. For example, your applet might ask for the privilege of writing to a 
local file. 

2. Navigator checks its privileges database to see if the action is allowed for the applet's signer. If 
no entry in the database exists, it prompts the user with a dialog box. The user chooses 
whether the action is allowed or denied; this decision can be saved in the privileges database 
for future reference. 

This is all well and good, but it means that we must modify our original Renegade applet. 
Furthermore, by adding support for the Capabilities API, we are making an applet that will run only in 
a Netscape browser. This is contrary to Java's original "write once, run everywhere" mantra. It's true 
that each browser recognizes signed applets in a different format, which already torpedoes your ability 
to create a single signed applet and have it run everywhere. By adding support for the Capabilities 
API, however, you have to actually modify the applet class itself, which is more of a problem than 
simply packaging up the applet in different ways. 

Nevertheless, if you are willing to change the applet itself, here is the way to do it. In the Renegade 
applet, we just add a static call to netscape.security.PrivilegeManager, asking permission to read 
a system property: 

import java.applet.*; 
import java.awt.*; 
 
import netscape.security.PrivilegeManager; 
 
public class PrivilegedRenegade extends Applet { 
  private String mMessage; 
 
  public void init() { 
    try { 
      PrivilegeManager.enablePrivilege("UniversalPropertyRead"); 
      mMessage = "Your name is " + System.getProperty("user.name") + "."; 
    } 
    catch (netscape.security.ForbiddenTargetException e) { 
      mMessage = "Can't get your name, due to a ForbiddenTargetException."; 
    } 
    catch (SecurityException e) { 
      mMessage = "Can't get your name, due to a SecurityException."; 
    } 
  } 
 
public void paint(Graphics g) { 
    g.drawString("PrivilegedRenegade", 25, 25); 
    g.drawString(mMessage, 25, 50); 
  } 
} 

http://www.verisign.com/
http://developer.netscape.com/library/technote/security/sectn2.html
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To compile this class, you need to have the Netscape Java classes in your CLASSPATH. On my machine, 
this meant adding the following path: 

c:\Program Files\Netscape\Communicator\Program\Java\Classes\java40.jar 

You can read more about the Capabilities API at: 

 http://developer.netscape.com/library/documentation/signedobj/capsapi.html.  

8.3.3 Sign the Applet 

Netscape's signing tool is called zigbert. You can find information about zibgert at 
http://developer.netscape.com/library/documentation/signedobj/zigbert/. zigbert signs directories, 
not archives, so you'll actually have to perform the signing operation before you create a JAR. 

In our case, we have just one file to sign, PrivilegedRenegade.class . Move this file into its own 
directory, called signdir. To sign this directory, you have to tell zigbert where to find your keys and 
certificates and which certificate should be used for signing. On my Win95 machine, Netscape's keys 
and certificates are in the c:\ Program Files\Netscape\users\ jonathan directory. I'll use the one that 
I got from VeriSign: 

C:\ zigbert -d"c:\Program Files\Netscape\users\jonathan" -k"Jonathan B 
 Knudsen VeriSign Trust Network ID" signdir 
using key "Jonathan B Knudsen VeriSign Trust Network ID" 
using certificate directory: c:\Program Files\Netscape\users\jonathan 
Generating signdir/META-INF/manifest.mf file.. 
--> PrivilegedRenegade.class 
Generating zigbert.sf file.. 
using key database: c:\Program Files\Netscape\users\jonathan/key3.db 
tree "signdir" signed successfully 
C:\ 

zigbert creates the signature files and the manifest file in the new META-INF directory. 

 

Use Version 0.6, Not Version 0.6a 
As of this writing, Netscape provides two versions of zigbert. Version 0.6 requires a 
system file, msvcrtd.dll, to be present on your system. If you don't have this file, you might 
be tempted to use version 0.6a, which doesn't require the file. Don't do it! Version 0.6a of 
zigbert does not work. Any signed archives you produce with zigbert 0.6a will not work 
correctly. In fact, zigbert itself can't even verify them. 

To use version 0.6, the correctly working version, you'll need msvcrtd.dll. Don't worry; you 
probably already have msvcrt.dll on your system (in c:\windows\ system, most likely). To 
get zigbert 0.6 to run, just make a copy of msvcrt.dll and name the copy msvcrtd.dll. 

 

8.3.4 Bundle the Applet 

Now that you've used zigbert to create the signing information, we need to bundle the 
PrivilegedRenegade.class file and the signing information into a JAR. When you downloaded 
zigbert, you should also have received a tool called zip, which can be used to create a JAR.[3] You just 
need to tell it the name of the JAR and the files you want to add to it. To create an archive for our 
PrivilegedRenegade class, run the following command in the signdir directory: 

[3] Although you should be able to use Sun's tool, jar, to bundle up the applet, I don't recommend it. Even 
though JARs should be standard, browsers tend to be finicky. It's safest to use Netscape's tool to create JARs for 
Netscape's browser. 

C:\ zip -r ..\nsRenegade.jar * 
  adding: PrivilegedRenegade.class (deflated 44%) 
  adding: META-INF/manifest.mf (deflated 14%) 
  adding: META-INF/zigbert.sf (deflated 27%) 
  adding: META-INF/zigbert.rsa (deflated 40%) 
 

http://developer.netscape.com/library/documentation/signedobj/capsapi.html
http://developer.netscape.com/library/documentation/signedobj/zigbert/
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That's all there is to it. You can verify that the archive is correctly signed, using zigbert: 

C:\ zigbert -d"c:\Program Files\Netscape\users\jonathan" -v nsRenegade.jar 
using certificate directory: c:\Program Files\Netscape\users\jonathan 
archive "nsRenegade.jar" has passed crypto verification. 
 
          status   path 
    ------------   ------------------- 
        verified   PrivilegedRenegade.class 
 
C:\ 

8.3.5 Test the Applet 

We need a slightly altered HTML page for our Netscape-oriented applet. The class name is now 
PrivilegedRenegade, and the signed archive that contains it is nsRenegade.jar. Here is the modified 
HTML page, nsRenegade.html : 

<html> 
<head> 
</head> 
<body> 
  <applet code = PrivilegedRenegade.class archive = nsRenegade.jar 
      width = 400 height = 200></applet> 
</body> 
</html> 

Note that if both PrivilegedRenegade.class and nsRenegade.jar are present in the directory with 
nsRenegade.html, the browser will use the class file and ignore the signed archive. This can be 
confusing; the applet will still run, but it will not be signed. To avoid this, remove 
PrivilegedRenegade.class to force the browser to look in the archive for the class. 

Point Navigator at nsRenegade.html. As with our HotJava example, Navigator determines that the 
applet is asking to play outside the sandbox. Having no precedent for this, Navigator asks the user if 
it's allowed, as shown in Figure 8.4. 

Figure 8.4. Navigator asks for permission 

 
You can grant or deny the privilege and optionally make the decision "stick," using the Remember 
this decision checkbox. 

8.3.6 Set Up the Browser 

You can now examine (but not configure!) the privileges for this applet signer in detail. Choose the 
Security Info item from the Communicator menu. Then choose the Java/JavaScript option. You 
should see the name of your signer in the list, as in Figure 8.5. 
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Figure 8.5. Navigator's code signers 

 
Although this window contains a button labeled Edit Privileges, clicking on the button gives you 
only a summary of the privilege decisions you've made for this signer. Fine-grained editing capabilities 
will presumably come along later.  

8.4 Internet Explorer 

Microsoft , as usual, has come up with entirely new solutions to the problem of code signing. It uses its 
own archive format and a set of code-signing tools based around the Microsoft CryptoAPI. 

8.4.1 Recipe 

You'll have to install two pieces of software to sign code for Internet Explorer. First, you'll need the 
browser, Internet Explorer 4.0, available from http://www.microsoft.com/ie/ie40/. For the archive 
and code-signing tools, you'll need the SDK for Java 2.0, available from: 

 http://www.microsoft.com/java/. 

8.4.2 Prepare a Signer 

Microsoft's tools allow you to create a test certificate that you can use for signing. This means you can 
experiment with signed applets without shelling out $20 for a real certificate. If you want to sign code 
with a real certificate, you can buy one from VeriSign (http://www.verisign.com/). 

To create a test certificate, you can use tools that are installed as part of the SDK for Java, in the SDK-
Java.20\Bin\PackSign directory: 

MakeCert -sk JonathanKey -n CN=JonathanCompany Jonathan.cert 

This creates a certificate file called Jonathan.cert. It uses the secret key called JonathanKey. If there is 
no such key, MakeCert creates one. This key is stored in a private key management database and can 
be accessed later. The -n option is used to specify what name is placed on the newly created certificate. 
You need a Software Publisher Certificate (SPC) to sign code. The SDK for Java has a handy utility 
that converts a certificate into an SPC: 

Cert2SPC Jonathan.cert Jonathan.spc 

This is all you need to do to create a test signer. You have an SPC file and a private key, which are 
sufficient to sign code. 

http://www.microsoft.com/ie/ie40/
http://www.microsoft.com/java/
http://www.verisign.com/
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If you buy a certificate from VeriSign, it comes to you in the form of a private key file and an SPC file. 
Save both of these files in safe places. Be especially careful with the private key. On Windows 95 
systems, this means putting the files on a floppy disk or some other removable media that you can 
keep physically secure. On Windows NT systems, the concepts of file ownership and permissions can 
give your files some protection, so you might decide that leaving your private key file on the hard disk 
is an acceptable risk.  

8.4.3 Bundle the Applet 

Microsoft applets are bundled into cabinet files , which have a .cab extension. You can use the cabarc 
tool to manipulate cabinet files. In our case, we simply want to create a new cabinet file that contains 
Renegade.class. We'll use the n option to create a new cabinet file: 

C:\ cabarc n ieRenegade.cab Renegade.class 
 
Microsoft (R) Cabinet Tool - Version 1.00.0601 (03/18/97) 
Copyright (c) Microsoft Corp 1996-1997. All rights reserved. 
 
Creating new cabinet 'ieRenegade.cab' with compression 'MSZIP': 
  -- adding Renegade.class 
Completed successfully 
 
C:\ 

8.4.4 Sign the Applet 

The tool that is used for signing is called SignCode . If you created a test signer, then you can sign your 
cabinet file as follows: 

SignCode -spc Jonathan.spc -k JonathanKey ieRenegade.cab 

This uses the JonathanKey private key to sign the given cabinet file and attaches the Jonathan.spc 
certificate to the file. 

If you have a real certificate from a CA, you should have received an SPC file and a private key file. 
When I bought a certificate from VeriSign, I received these files and saved them as Jonathan.spc and 
Jonathan.pvk. The command I used to sign the Renegade applet looks like this: 

SignCode -spc Jonathan.spc -v Jonathan.pvk ieRenegade.cab 

You can check to see if a cabinet file has been signed using ChkTrust, as follows: 

ChkTrust ieRenegade.cab 

This command will bring up a window that describes the signature on the cabinet file. You can view 
the certificate associated with the signed cabinet file, if you wish.  

8.4.5 Test the Applet 

Again, we need a new HTML file to run the applet. Here is the Internet Explorer version of the HTML 
page, ieRenegade.html: 

<html> 
<head> 
</head> 
<body> 
  <applet code = Renegade width = 300 height = 200> 
  <param name = cabbase value = ieRenegade.cab> 
  </applet> 
</body> 
</html> 

As with the other browsers, you should remove Renegade.class from the directory containing the 
HTML page. This will force Internet Explorer to look inside the archive file for the Renegade class. 

Run Internet Explorer and point it at the ieRenegade.html file. As before, the browser recognizes the 
signed archive and displays a message, asking you if the applet should be allowed to run. This is 
shown in Figure 8.6. 
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Figure 8.6. Internet Explorer asks if it can run a signed applet 

 
Note that Internet Explorer gives you an all-or-nothing decision. You can either run the applet, 
allowing it full access outside the sandbox, or prevent it from running. HotJava, you'll recall, would 
ask permission each time the applet tried to do something outside the sandbox. Microsoft's approach 
probably reflects its real interest, ActiveX, which cannot be controlled with fine-grained policies the 
way Java applets can. 

Microsoft has a system, somewhat like Netscape's Capabilities API, that can be used to ask for specific 
permissions. It is described at http://www.microsoft.com/java/security/. 

8.5 Summary 

Currently, signed applets are hard to work with for two reasons: 

• Each of the large browser vendors uses a different format for signed applets. 

• Code signing tools are buggy. 

You can compensate for the first problem, on the server side, by detecting the type of client browser 
and returning a page containing a browser-specific applet. (Yuck!) You can compensate for the second 
problem by sweating a lot and tearing your hair out. If your application design relies on signed 
applets, you should think long and hard before proceeding. Chapter 12, discusses some popular 
application architectures and the pros and cons of using an applet as a client. If you are developing an 
application in a partly closed environment, where you know that only one brand of browser will be 
used, then signed applets may be practical. 

As this book goes to press, an interesting alternative technology is emerging: Sun's Java Activator. 
This is a Java Runtime Environment (JRE) that runs as a plug-in or extension with Netscape 
Navigator and Internet Explorer. Basically, it enables applets to use Sun's JVM instead of Netscape's, 
or Microsoft's. Signed applets are supported in Activator, but the exact technique is evolving. Check 
the documentation for details. 

Furthermore, it's not clear what will happen to Navigator vis-a-vis Java, now that Navigator is free 
and the source code will be published. Netscape has stated that it will no longer produce a JVM, 
instead making the browser accept any JVM developed by Sun or Microsoft or anyone else. How this 
will affect signed applets remains to be seen.  

http://www.microsoft.com/java/security/
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Chapter 9. Writing a Provider 
If you can't find a cryptographic provider that implements the algorithms you want to use, it may be 
worth your while to write your own provider. A cryptographic provider is just a collection of classes 
that implement cryptographic algorithms - signatures, ciphers, or message digests. One of the classes, 
which will be a subclass of java.security.Provider , maps algorithm names to class names. The 
Provider subclass represents the provider as a whole. When you give an algorithm name to a 
getInstance() method, it is this class that figures out what type of object will be returned. 

In this chapter, we'll develop a provider and several classes that implement the ElGamal cipher and 
signature algorithms. First, we'll look at a very simple cryptographic provider. Next, I'll introduce the 
ElGamal algorithms and show how the provider can accommodate them. In the remainder of the 
chapter, I'll show the code for the ElGamal key pair generation, signatures, and ciphers. If you're 
interested only in learning how to create your own provider, just read the beginning of this chapter. 

9.1 Getting Started 

9.1.1 Algorithm Names and Implementations 

A cryptographic provider is a set of classes that implement cryptographic algorithms . A Provider 
subclass keeps track of how the algorithm names and classes are related. Basically, it's a list of 
algorithm names and their corresponding implementations. For example, in Chapter 7, we developed 
the CBCWrapper class, which (by default) supports DES in CBC mode with PKCS#5 padding. We also 
developed the CFBWrapper class, which supports DES in eight-bit CFB mode with no padding. A 
simple provider then might map algorithm names to class names like this: 

DES/CBC/PKCS5Padding : oreilly.jonathan.crypto.CBCWrapper 
DES/CFB/NoPadding : oreilly.jonathan.crypto.CFBWrapper 

Remember, though, that a cryptographic provider can include several different kinds of algorithms: 
key pair generation, signatures, ciphers, and others. How does the provider know which is which? The 
algorithm name is actually made up of a type and a name, as follows: 

Cipher.DES/CBC/PKCS5Padding : oreilly.jonathan.crypto.CBCWrapper 
Cipher.DES/CFB/NoPadding : oreilly.jonathan.crypto.CFBWrapper 

The type corresponds to a cryptographic concept class, like Cipher or Signature. The 
implementation class is the corresponding SPI class, like javax.crypto.CipherSpi or 
java.security.SignatureSpi. Later, for example, we'll develop a class that implements the 
ElGamal signature algorithm. It's a subclass of SignatureSpi. To associate the algorithm name and 
the implementation class, our provider will have the following mapping: 

 
Signature.ElGamal : oreilly.jonathan.crypto.ElGamalSignature 

9.1.2 A Simple Provider 

Let's stick with the simple case, just to get started. We'll create a Provider subclass that includes the 
mappings for the CBCWrapper and CFBWrapper classes. Our provider is represented by 
oreilly.jonathan.security.Provider, a subclass of java.security.Provider . 

Provider is a subclass of java.util.Hashtable; it maintains the mappings between algorithm 
names and implementations as a list of string mappings. You can add a mapping using put(). 

Our first provider subclass is very short: 

package oreilly.jonathan.crypto; 
 
import java.security.*; 
 
public class Provider 
    extends java.security.Provider { 
  public Provider() { 
    super ("Jonathan", 
        1.2, 
        "Jonathan's Cryptography Provider"); 
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    put("Cipher.DES/CBC/PKCS5Padding", 
        "oreilly.jonathan.crypto.CBCWrapper"); 
    put("Cipher.DES/CFB/NoPadding", "oreilly.jonathan.crypto.CFBWrapper"); 
  } 
} 

The call to super() specifies the provider's short name, version, and long name. The short name is 
used in the getInstance() methods that accept a provider name. For example, you could explicitly 
request the DSA key generator from the SunJCE provider as follows: 

kpg = KeyPairGenerator.getInstance("DSA", "SunJCE"); 

Our provider is imaginatively named "Jonathan." 

9.1.3 An Algorithm by Any Other Name 

Sometimes you may want to return the same implementation for different algorithm names. In the 
default SUN provider, for example, you'll get the same message digest implementation in both of the 
following lines of code: 

MessageDigest one = MessageDigest.getInstance("SHA-1"); 
MessageDigest two = MessageDigest.getInstance("SHA"); 

We might, for example, want "DES/CFB8/NoPadding" to also map to CFBWrapper because that class 
implements eight-bit CFB mode. We can accomplish this in our provider by defining an algorithm 
alias, as follows: 

put("Alg.Alias.Cipher.DES/CFB8/NoPadding", "DES/CFB/NoPadding"); 

With this additional information in our provider, the following lines will be equivalent: 

Cipher one = Cipher.getInstance("DES/CFB8/NoPadding"); 
Cipher two = Cipher.getInstance("DES/CFB/NoPadding"); 

9.1.4 Installing the Provider 

As we saw in Chapter 3,there are two ways to install the Jonathan provider on your system. To 
statically add the Jonathan provider, edit the java.security file found in the lib/security directory 
underneath the JDK installation directory. You'll need to add a line for the Jonathan provider like the 
following: 

security.provider.n=oreilly.jonathan.crypto.Provider 

In this case, n is the preference position for the provider. For example, this is how providers are 
configured on my system: 

security.provider.1=sun.security.provider.Sun 
security.provider.2=com.sun.crypto.provider.SunJCE 
security.provider.3=oreilly.jonathan.crypto.Provider 
security.provider.4=cryptix.security.Cryptix 
security.provider.5=iaik.security.provider.IAIK 

In my case, the Jonathan provider is always the third provider queried for algorithms. 

What if you write an application that uses the Jonathan provider, but you don't want your users to 
have to mess around with the java.security file? Your application can add the Jonathan provider at 
runtime using the following code: 

java.security.Provider p = new oreilly.jonathan.crypto.Provider(); 
Security.addProvider(p); 

This adds the Jonathan provider to the end of the preference list; to place it in a particular spot, use 
insertProviderAt().  

9.2 Adding the ElGamal Classes 

In this chapter, we'll develop a full suite of classes to support ElGamal signatures and ciphers. The 
Jonathan provider will need to know about some of the implementation classes, namely: 

oreilly.jonathan.crypto.ElGamalKeyPairGenerator 
oreilly.jonathan.crypto.ElGamalSignature 
oreilly.jonathan.crypto.ElGamalCipher 
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Thus, we just need to add the correct associations to our simple provider class. It's a piece of cake: 

package oreilly.jonathan.crypto; 
 
import java.security.*; 
 
public class Provider 
    extends java.security.Provider { 
  public Provider() { 
    super ("Jonathan", 
        1.2, 
        "Jonathan's Cryptography Provider"); 
     
    put("KeyPairGenerator.ElGamal", 
        "oreilly.jonathan.crypto.ElGamalKeyPairGenerator"); 
    put("Cipher.ElGamal", "oreilly.jonathan.crypto.ElGamalCipher"); 
    put("Signature.ElGamal", "oreilly.jonathan.crypto.ElGamalSignature"); 
     
    put("Cipher.DES/CBC/PKCS5Padding", 
        "oreilly.jonathan.crypto.CBCWrapper"); 
    put("Cipher.DES/CFB/NoPadding", "oreilly.jonathan.crypto.CFBWrapper"); 
put("Alg.Alias.Cipher.DES/CFB8/NoPadding", "DES/CFB/NoPadding"); 
  } 
} 

The hard part is actually implementing the algorithms. We'll spend the rest of the chapter doing just 
that. 

9.3 ElGamal 

ElGamal is named after its creator, Taher ElGamal. Although it was not patented directly, a patent 
covering Diffie-Hellman key exchange was considered to cover ElGamal as well. Lucky for us, the 
patent expired as I wrote this book. ElGamal is now free. 

I won't try to explain the math or demonstrate why it's a secure set of algorithms. The equations 
themselves are not too hard to understand. 

9.3.1 Key Pair Generation 

Here's the recipe for generating a key pair: 

1. Create a random prime number, p. This number is called the modulus. The size of p is the 
same as the key size, so a 2048-bit key has a p that is 2048 bits. 

2. Choose two other random numbers, g and x, both less than p. The private key is x. 

3. Calculate y = gx mod p. The public key is p, g, and y. 

9.3.2 Signature 

To generate a signature using the private key, follow these steps: 

1. Choose a random number, k, that is relatively prime to p - 1. Relatively prime means that k 
and p - 1 have no factors in common (except 1). 

2. Calculate and , where m is the message. The signature is 
the numbers a and b. 

To verify such a signature, you just have to check that  
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9.3.3 Cipher 

ElGamal encryption consists of two steps: 

1. Choose a random number, k, that is relatively prime to p - 1. 

2. Calculate and where m is the plaintext message. The ciphertext 
is the numbers a and b. It is twice as large as the modulus, p. 

To decrypt, calculate This works because: 

 

All of this math can be accomplished using java.math.BigInteger . Implementing the algorithm in a 
Cipher, however, can be tricky. The reason has to do with the size of the numbers involved.  

Take another look at the equation used for decryption. The message, m, will always be less than the 
modulus, p. If you want to encrypt a message that is larger than the modulus value, the message will 
have to be split into manageable pieces. Specifically, the message should be split into pieces that are 
less than the bit length of p. 

The size of the ciphertext also depends on the size of the modulus. The ciphertext values, a and b, 
range from to p - 1. The size of the ciphertext, then, is twice the number of bits as in p. 

For example, a 512-bit key has a 512-bit p. Any incoming messages will have to be split into pieces that 
are 511 bits or smaller. Because Cipher deals only with bytes, not bits, the incoming block size will be 
(512 - 1) / 8 = 63 bytes. The ciphertext, on the other hand, will be twice the modulus length, or 128 
bytes (1024 bits). As you read the code for ElGamalCipher, you'll see how these lengths are 
calculated.[1]  

[1] Schneier, in the second edition of Applied Cryptography, incorrectly states that the ciphertext is twice the 
length of the plaintext. The ciphertext is twice the length of the modulus, and the plaintext should be slightly 
shorter than the modulus. Thus, the ciphertext is a little more than twice the length of the plaintext. 

9.4 Generating Keys 

9.4.1 Key Classes 

As shown earlier, an ElGamal public key consists of p, g, and y. The matching private key is x. We'll 
need classes to encapsulate these values. 

If you look back at the algorithm for verifying a signature, you'll notice it uses not only x, but p and g 
as well. Thus, we'll make our private key class contain p, g, and x. The public and private key classes 
then both descend from ElGamalKey, which is simply a container for p and g. 

package oreilly.jonathan.crypto; 
 
import java.math.BigInteger; 
import java.security.*; 
 
public class ElGamalKey 
    implements Key { 
  private BigInteger mP, mG; 
   
  protected ElGamalKey(BigInteger g, BigInteger p) { 
    mG = g; 
    mP = p; 
  } 
  protected BigInteger getG() { return mG; } 
  protected BigInteger getP() { return mP; } 
   
  public String getAlgorithm() { return "ElGamal"; } 
  public String getFormat() { return "NONE"; } 
  public byte[] getEncoded() { return null; } 
} 
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The ElGamal public key consists of p, g, and y. Because p and g are already contained in ElGamalKey, 
the public key class has to contain just y: 

package oreilly.jonathan.crypto; 
 
import java.math.BigInteger; 
import java.security.*; 
 
public class ElGamalPublicKey 
    extends ElGamalKey 
    implements PublicKey { 
  private BigInteger mY; 
   
  protected ElGamalPublicKey(BigInteger y, BigInteger g, BigInteger p) { 
    super(g, p); 
    mY = y; 
  } 
   
  protected BigInteger getY() { return mY; } 
} 

And ElGamalPrivateKey simply holds x: 

package oreilly.jonathan.crypto; 
 
import java.math.BigInteger; 
import java.security.*; 
 
public class ElGamalPrivateKey 
    extends ElGamalKey 
    implements PrivateKey { 
  private BigInteger mX; 
   
  protected ElGamalPrivateKey(BigInteger x, BigInteger g, BigInteger p) { 
    super(g, p); 
    mX = x; 
  } 
   
  protected BigInteger getX() { return mX; } 
} 

9.4.2 ElGamalKeyPairGenerator 

The key pair generation procedure was outlined previously. The BigInteger class makes it possible to 
translate this procedure almost effortlessly into code: 

package  
oreilly.jonathan.crypto; 
 
import java.math.BigInteger; 
import java.security.*; 
 
public class ElGamalKeyPairGenerator 
    extends KeyPairGeneratorSpi { 
  private int mStrength = 0; 
  private SecureRandom mSecureRandom = null; 
   
  // Strength is interpreted as the bit length of p. 
  public void initialize(int strength, SecureRandom random) { 
    mStrength = strength; 
    mSecureRandom = random; 
  } 
   
  public KeyPair generateKeyPair() { 
    if (mSecureRandom == null) { 
      mStrength = 1024; 
      mSecureRandom = new SecureRandom(); 
    } 
    BigInteger p = new BigInteger(mStrength, 16, mSecureRandom); 
    BigInteger g = new BigInteger(mStrength - 1, mSecureRandom); 
    BigInteger x = new BigInteger(mStrength - 1, mSecureRandom); 
    BigInteger y = g.modPow(x, p); 
     
    ElGamalPublicKey publicKey = new ElGamalPublicKey(y, g, p); 
    ElGamalPrivateKey privateKey = new ElGamalPrivateKey(x, g, p); 
    return new KeyPair(publicKey, privateKey); 
  } 
} 
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The key pair generator is initialized with a measure of strength and a SecureRandom, which are stored 
in member variables. In generateKeyPair(), we set a default value for the strength in case 
initialize() has not been called. Then we're ready to begin creating the ElGamal key pair. First, we 
create a random prime number, p. The key pair generator's strength determines the length of this 
number, in bits (commonly known as the "key length"). In the BigInteger constructor, the number 16 
determines the probability that the returned number is really a prime. The probability of its being 
prime is 1 - .5n for a given "certainty" value, n. So our certainty of 16 means that p has a probability of 
.99998474 of being prime. You can increase this value to be more certain that you have a prime 
number, but it will take longer to calculate. For more information about the BigInteger constructors 
used for p, g, and x, see Appendix A. Once we've created p, g and x are created as random numbers 
smaller than p. Then y is calculated from g, x, and p. This done, we simply create the appropriate 
public and private keys, package them in a KeyPair, and return the result.  

9.5 Signature 

To implement an ElGamal signature class, we'll have to implement the Service Provider Interface 
(SPI) of Signature, which is contained in SignatureSpi . I talked briefly about the SPI in Chapter 3; 
SignatureSpi contains all the methods you need to define to implement a signature algorithm: 

 
package oreilly.jonathan.crypto; 
 
import java.io.ByteArrayOutputStream; 
import java.math.BigInteger; 
import java.security.*; 
 
public class ElGamalSignature 
    extends SignatureSpi { 

A Signature is intialized with a key, which is used later to either generate or verify a signature value. 
We'll save the intialization key in a member variable until we need it: 

protected ElGamalKey mKey; 

As data is added to our ElGamalSignature with the update() method, we'll accumulate it in a 
ByteArrayOutputStream. When the time comes to generate or verify the signature value, we'll use the 
data from this stream: 

protected ByteArrayOutputStream mOut; 

In the signature calculations, later, we'll frequently make use of the number 1 as a BigInteger. Here, I 
use a static member variable to hold this special value: 

protected static BigInteger kOne = BigInteger.valueOf(1); 

When the initVerify() method of Signature is called, it eventually calls the SPI method 
engineInitVerify() . In our implementation, we first check to make sure we've received an 
ElGamalPublicKey because a public key is always used to verify a signature. Then we save the key and 
create a new ByteArrayOutputStream to hold the data that will be used to verify the signature: 

  protected void engineInitVerify(PublicKey key) 
      throws InvalidKeyException { 
    if (!(key instanceof ElGamalPublicKey)) 
      throw new InvalidKeyException("I didn't get an ElGamalPublicKey."); 
    mKey = (ElGamalKey)key; 
    mOut = new ByteArrayOutputStream(); 
  } 

Likewise, the SPI method engineInitSign() gets called when Signature's initSign() method is 
called. As before, we check to make sure we have the right kind of key (a private key this time). Then 
we save the key in a member variable and create a new ByteArrayOutputStream for the message 
data: 

  protected void engineInitSign(PrivateKey key) throws InvalidKeyException { 
    if (!(key instanceof ElGamalPrivateKey)) 
      throw new InvalidKeyException("I didn't get an ElGamalPrivateKey."); 
    mKey = (ElGamalKey)key; 
    mOut = new ByteArrayOutputStream(); 
  } 
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Signature's update() methods end up calling the corresponding engineUpdate() SPI methods. Our 
implementations of engineUpdate() write the input data to the internal ByteArrayOutputStream. 
This means that the ElGamalSignature class accumulates all the data you feed it. If you want to 
calculate the signature on a 20-MB file, this is probably not a good approach. For small pieces of data, 
like certificates, it works just fine. 

  protected void engineUpdate(byte b) throws SignatureException { 
    mOut.write(b); 
  } 
   
  protected void engineUpdate(byte[] b, int off, int len) 
      throws SignatureException { 
    mOut.write(b, off, len); 
  } 

engineSign() is the SPI equivalent of sign() in the Signature API. It will not be called unless your 
SignatureSpi has been correctly initialized for signing. In ElGamalSignature, engineSign() 
contains the implementation of the math described earlier. First, we extract some parameters from 
the stored private key that was originally passed to initSign(). For convenience, we also calculate 
the value p - 1. 

  protected byte[] engineSign() throws SignatureException { 
    BigInteger x = ((ElGamalPrivateKey)mKey).getX(); 
    BigInteger g = mKey.getG(); 
    BigInteger p = mKey.getP(); 
    BigInteger pminusone = p.subtract(kOne); 

Next, engineSign() randomly picks k, such that it is relatively prime to p - 1: 

    BigInteger k; 
    do { 
      k = new BigInteger(p.bitLength() - 1, new SecureRandom()); 
    } while (k.gcd(pminusone).equals(kOne) == false); 

All the bytes of message that were accumulated in the ByteArrayOutputStream are converted to a 
BigInteger called m: 

BigInteger m = new BigInteger(1, mOut.toByteArray()); 

The signature is represented by the values a and b, where and 

The variable top is used as an intermediate result, to simplify the 
calculation: 

    BigInteger a = g.modPow(k, p); 
    BigInteger top = m.subtract(x.multiply(a)).mod(pminusone); 
    BigInteger b = top.multiply( 
        k.modPow(kOne.negate(), pminusone)).mod(pminusone); 

We've calculated the signature, but we need to return the a and b values as a byte array. We create an 
array that is twice the key's modulus length and write bytes representing a and b into this array. The 
helper function, getBytes(), is presented later. 

    int modulusLength = (p.bitLength() + 7) / 8; 
    byte[] signature = new byte[modulusLength * 2]; 
    byte[] aBytes = getBytes(a); 
    int aLength = aBytes.length; 
    byte[] bBytes = getBytes(b); 
    int bLength = bBytes.length; 
    System.arraycopy(aBytes, 0, 
        signature, modulusLength - aLength, aLength); 
    System.arraycopy(bBytes, 0, 
        signature, modulusLength * 2 - bLength, bLength); 
    return signature; 
  } 

To verify a signature, you call verify() in Signature's API. This calls the corresponding SPI method, 
engineVerify(). The first thing this method does is extract some parameters from the stored public 
key: 

  protected boolean engineVerify(byte[] sigBytes) 
      throws SignatureException { 
    BigInteger y = ((ElGamalPublicKey)mKey).getY(); 
    BigInteger g = mKey.getG(); 
    BigInteger p = mKey.getP(); 
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Next, we need to extract the signature values, a and b, from the supplied byte array. To do this, we 
create a BigInteger from each half of the signature byte array: 

    int modulusLength = (p.bitLength() + 7) / 8; 
    byte[] aBytes = new byte[modulusLength]; 
    byte[] bBytes = new byte[modulusLength]; 
    System.arraycopy(sigBytes, 0, aBytes, 0, modulusLength); 
    System.arraycopy(sigBytes, modulusLength, bBytes, 0, modulusLength); 
    BigInteger a = new BigInteger(1, aBytes); 
    BigInteger b = new BigInteger(1, bBytes); 

Now it's a matter of calculating y aab mod p and gm mod p and checking to see if they're equal: 

    BigInteger first = y.modPow(a, p).multiply(a.modPow(b, p)).mod(p); 
 
    BigInteger m = new BigInteger(1, mOut.toByteArray()); 
    BigInteger second = g.modPow(m,p); 
     
    return first.equals(second); 
  } 

The next method in ElGamalSignature is getBytes(), which returns an array of bytes representing a 
BigInteger value. Although BigInteger has such a method, it uses an extra bit to indicate the sign of 
the number. In ElGamalSignature's calculations, all the numbers are positive; we have no interest in 
a sign bit. This helper method, getBytes() , returns an array of bytes that is only as long as it needs to 
be, ignoring the sign of the number: 

  protected byte[] getBytes(BigInteger big) { 
    byte[] bigBytes = big.toByteArray(); 
    if ((big.bitLength() % 8) != 0) { 
      return bigBytes; 
    } 
    else { 
      byte[] smallerBytes = new byte[big.bitLength() / 8]; 
      System.arraycopy(bigBytes, 1, smallerBytes, 0, smallerBytes.length); 
      return smallerBytes; 
    } 
  } 

Finally, we need to implement the SPI methods engineSetParameter() and 
engineGetParameter(). These methods provide a general way to set and retrieve algorithm-specific 
parameters. ElGamalSignature has no use for parameters, so these methods are empty. In JDK 1.2, 
these methods are deprecated, and the compiler will warn you about this. You can't, however, create a 
concrete SignatureSpi subclass without defining them: 

  protected void engineSetParameter(String param, Object value) 
      throws InvalidParameterException {} 
  protected Object engineGetParameter(String param) 
      throws InvalidParameterException { return null; } 
} 

9.6 Cipher 

The ElGamalCipher class contains the magic of the ElGamal cipher algorithm. This class indirectly 
extends javax.crypto.CipherSpi; it lives in the oreilly.jonathan.crypto package along with the 
rest of the ElGamal classes. Just as the signature classes implemented the methods of SignatureSpi, 
ElGamalCipher needs to implement the methods of CipherSpi. 

To simplify the implementation of the ElGamal cipher, this class is a subclass of BlockCipher, which 
was presented in Chapter 7. BlockCipher provides buffering and block handling and saves some 
trouble in implementing the ElGamal algorithm: 

package oreilly.jonathan.crypto; 
 
import java.math.BigInteger; 
import java.security.*; 
import java.security.spec.*; 
 
import javax.crypto.*; 
 
public class ElGamalCipher 
    extends BlockCipher { 
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The block sizes of the cipher depend on the size of its key, as discussed earlier. When the cipher is 
initialized for encryption or decryption, we calculate the size of a plaintext block and the size of a 
ciphertext block. The key itself and the block sizes are stored in member variables. We also store the 
state of the cipher (either Cipher.ENCRYPT_MODE or Cipher.DECRYPT_MODE) and whatever 
SecureRandom is passed to our ElGamalCipher when it is initialized: 

  protected int mState; 
  protected Key mKey; 
  protected SecureRandom mSecureRandom; 
  protected int mPlainBlockSize; 
  protected int mCipherBlockSize; 

This class supports no modes or padding, so engineSetMode() and engineSetPadding() both throw 
exceptions when called: 

  protected void engineSetMode(String mode) 
      throws NoSuchAlgorithmException { 
    throw new NoSuchAlgorithmException("ElGamalCipher supports no modes."); 
  } 
   
  protected void engineSetPadding(String padding) 
      throws NoSuchPaddingException { 
    throw new NoSuchPaddingException("ElGamalCipher supports no padding."); 
  } 

There's a bit of a lie here. ElGamalCipher doesn't actually implement a padding scheme, but it can 
accept data that is not exactly block-sized. When encrypting, ElGamalCipher will fill up an incomplete 
block with zeros, but it is unable to remove them when decrypting, which makes it fall short of a true 
padding scheme. Thus, the length of decrypted data will always be a multiple of the block size. If the 
length of the original plaintext was not a multiple of the block size, then the decrypted data will have 
extra zero bytes on the end of it. Figure 9.1 shows what happens, for an 8-byte block size and 13 bytes 
of plaintext. 

Figure 9.1. Block handling in ElGamalCipher 
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Although ElGamalCipher could implement PKCS#5-style padding, it's not a satisfactory solution. 
Consider, for example, a 1024-bit (or larger) ElGamal key. The ciphertext block size for this key will be 
(1024) / 8 * 2 = 256 bytes. Suppose we had to add a whole block of padding; it would be 256 bytes, 
each with a value of 256. But a byte holds values only from to 255. Thus, some other method of 
padding is needed. Note that this is not specific to ElGamal; any cipher with a ciphertext block size 
greater than 255 bytes will not be able to use PKCS#5 padding. Therefore, keep ElGamalCipher 
relatively simple, no padding is implemented. As it stands now, it's a very useful class; you just need to 
be careful about trailing zeros in the decrypted plaintext. 

The plaintext and ciphertext block sizes are calculated later. Here, engineGetBlockSize()just 
returns the appropriate size, based on the state of the cipher: 

  protected int engineGetBlockSize() { 
    if (mState == Cipher.DECRYPT_MODE) 
      return mCipherBlockSize; 
    else 
      return mPlainBlockSize; 
  } 

Calculating an output buffer size is a bit tricky. Based on the state of the cipher, we figure out how 
many input blocks are represented by inLen. Then the number of output bytes needed can be 
calculated. Note that we need to be careful to include the length of any data that has been buffered by 
our parent class, BlockCipher. Calls to getBufferedDataLength() return the length of the buffered 
data. 

  protected int engineGetOutputSize(int inLen) { 
    int inBlocks; 
    int outLength; 
     
    if (mState == Cipher.ENCRYPT_MODE) { 
      inBlocks = (inLen + getBufferedDataLength() + mPlainBlockSize - 1) / 
          mPlainBlockSize; 
      outLength = inBlocks * mCipherBlockSize; 
    } 
    else { 
      inBlocks = (inLen + getBufferedDataLength() + mCipherBlockSize - 1) / 
          mCipherBlockSize; 
      outLength = inBlocks * mPlainBlockSize; 
    } 
    return outLength; 
  } 

In cipher implementations that implement a feedback mode, the getIV() method returns the 
initialization vector. Our implementation of ElGamal runs just in ECB mode, so this method returns 
null: 

protected byte[] engineGetIV() { return null; } 

When the cipher is initialized for encryption or decryption, we calculate the plaintext and ciphertext 
block sizes, based on the size of the key. engineInit() uses another method, 
calculateBlockSizes() , to figure out the block sizes. First we check that the correct kind of key has 
been used to initialize the cipher. The supplied key is saved in the mKey member variable; it will be 
used later when the cipher encrypts or decrypts data. We also save the cipher's state and the supplied 
SecureRandom before calculating the block sizes. 

   protected void engineInit(int opmode, Key key, SecureRandom random) 
      throws InvalidKeyException { 
    if (opmode == Cipher.ENCRYPT_MODE) 
      if (!(key instanceof ElGamalPublicKey)) 
        throw new InvalidKeyException("I didn't get an ElGamalPublicKey."); 
    else if (opmode == Cipher.DECRYPT_MODE) 
      if (!(key instanceof ElGamalPrivateKey)) 
        throw new InvalidKeyException("I didn't get an ElGamalPrivateKey."); 
    else throw new IllegalArgumentException("Bad mode: " + opmode); 
     
    mState = opmode; 
    mKey = key; 
    mSecureRandom = random; 
    calculateBlockSizes(key); 
  } 



Java Cryptography 

 page 141

ElGamalCipher doesn't recognize any algorithm-specific initializations, so the algorithm-specific 
engineInit() just calls the previous overloaded version of engineInit(): 

  protected void engineInit(int opmode, Key key, 
      AlgorithmParameterSpec params, SecureRandom random) 
      throws InvalidKeyException, InvalidAlgorithmParameterException { 
    engineInit(opmode, key, random); 
  } 

The following methods simply calculate the size of a plaintext block and a ciphertext block, based on 
the size of the key used to initialize the cipher: 

  protected void calculateBlockSizes(Key key) { 
    int modulusLength = ((ElGamalKey)key).getP().bitLength(); 
    mPlainBlockSize = (modulusLength - 1) / 8; 
    mCipherBlockSize = ((modulusLength + 7) / 8) * 2; 
  } 

BlockCipher, ElGamalCipher's parent class, handles the details of input buffering and block 
handling. Our class needs to define just two methods from BlockCipher, namely 
engineTransformBlock() and engineTransformBlockFinal() . Because ElGamalCipher 
implements no padding, these methods perform the same function. The second method simply calls 
the first. 

In engineTransformBlock(), we call either encryptBlock() or decryptBlock() , based on the state 
of the cipher: 

  protected int engineTransformBlock(byte[] input, 
      int inputOffset, int inputLength, byte[] output, int outputOffset) 
      throws ShortBufferException { 
    if (mState == Cipher.ENCRYPT_MODE) 
      return encryptBlock(input, inputOffset, inputLength, 
          output, outputOffset); 
    else if (mState == Cipher.DECRYPT_MODE) 
      return decryptBlock(input, inputOffset, inputLength, 
          output, outputOffset); 
    return 0; 
  } 
   
  protected int engineTransformBlockFinal(byte[] input, 
      int inputOffset, int inputLength, byte[] output, int outputOffset) 
      throws ShortBufferException { 
    if (inputLength == 0) return 0; 
    return engineTransformBlock(input, inputOffset, inputLength, 
        output, outputOffset); 
  } 

In encryptBlock(), we first build the message value from the input bytes. Note that the 
messageBytes buffer is block-sized. Even if the plaintext input is shorter, we encrypt a full plaintext 
block. The remainder of the block will be zeros. 

  protected int encryptBlock(byte[] in, int inOff, int inLen, 
      byte[] out, int outOff) { 
    byte[] messageBytes = new byte[mPlainBlockSize]; 
    int inputLength = Math.min(mPlainBlockSize, inLen); 
    System.arraycopy(in, inOff, messageBytes, 0, inputLength); 
    BigInteger m = new BigInteger(1, messageBytes); 

Next, encryptBlock() creates the random number, k. We have to turn some cartwheels to calculate p 
- 1 in the BigInteger world: 

    ElGamalPublicKey key = (ElGamalPublicKey)mKey; 
    BigInteger p = key.getP(); 
    BigInteger one = BigInteger.valueOf(1); 
    BigInteger pminusone = p.subtract(one); 
    BigInteger k; 
    do { 
      k = new BigInteger(p.bitLength() - 1, mSecureRandom); 
    } while (k.gcd(pminusone).equals(one) == false); 

Then a and b are calculated, using the message value, the key, and k: 

    BigInteger a = key.getG().modPow(k, p); 
    BigInteger b = key.getY().modPow(k, p).multiply(m).mod(p); 
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Finally, a and b are copied into the output buffer. Because the length of a and b might be less than half 
the ciphertext block size, the values are right-justified: 

    byte[] aBytes = getBytes(a); 
    byte[] bBytes = getBytes(b); 
    System.arraycopy(aBytes, 0, 
        out, outOff + mCipherBlockSize / 2 - aBytes.length, aBytes.length); 
    System.arraycopy(bBytes, 0, 
        out, outOff + mCipherBlockSize - bBytes.length, 
        bBytes.length); 

encryptBlock() returns the number of ciphertext bytes written. Because it always processes a block 
of plaintext, it always generates one block of ciphertext: 

    return mCipherBlockSize; 
  } 

Decryption is a similar process. First a and b are extracted from the ciphertext input: 

  protected int  
decryptBlock(byte[] in, int inOff, int inLen, 
      byte[] out, int outOff) { 
    // Pull out our key. 
    ElGamalPrivateKey key = (ElGamalPrivateKey)mKey; 
    BigInteger p = key.getP(); 
 
    // Extract a and b. 
    byte[] aBytes = new byte[mCipherBlockSize / 2]; 
    System.arraycopy(in, inOff, aBytes, 0, mCipherBlockSize / 2); 
    byte[] bBytes = new byte[mCipherBlockSize / 2]; 
    System.arraycopy(in, inOff + mCipherBlockSize / 2, bBytes, 0, 
        mCipherBlockSize / 2); 
    BigInteger a = new BigInteger(1, aBytes); 
    BigInteger b = new BigInteger(1, bBytes); 

Then the message value can be calculated using  

BigInteger m = b.multiply(a.modPow(key.getX().negate(), p)).mod(p); 

To finish, the bytes of the message value are copied into the output buffer. We return the number of 
bytes decrypted, which should always be one plaintext block. Interestingly, the decrypted message m 
may actually be larger than one plaintext block if the wrong key is used for decryption. The 
gatedLength variable is used below to avoid throwing ArrayIndexOutOfBoundsExceptions in this 
case: 

    byte[] messageBytes = getBytes(m); 
    int gatedLength = Math.min(messageBytes.length, mPlainBlockSize); 
    System.arraycopy(messageBytes, 0, 
        out, outOff + mPlainBlockSize - gatedLength, 
        gatedLength); 
    return mPlainBlockSize; 
  } 

We use the same getBytes() helper method that you saw in ElGamalSignature: 

  protected byte[] getBytes(BigInteger big) { 
    byte[] bigBytes = big.toByteArray(); 
    if ((big.bitLength() % 8) != 0) { 
      return bigBytes; 
    } 
    else { 
      byte[] smallerBytes = new byte[big.bitLength() / 8]; 
      System.arraycopy(bigBytes, 1, smallerBytes, 0, smallerBytes.length); 
 
      return smallerBytes; 
    } 
  } 
} 
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And that's the whole ElGamalCipher class. There are several enhancements you might want to make, 
if you're feeling adventurous: 

• Implement a padding scheme so that decrypted plaintext will be the same length as the 
original plaintext. 

• Improve exception handling, particularly in the encryptBlock() and decryptBlock() 
methods. 

If you want to test out ElGamalCipher, read on. It's used in the next two chapters.  
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Chapter 10. SafeTalk 
SafeTalk is a Java application based on the talk utility of Unix. talk allows two users on different 
computers to type messages to each other, in real time, over a network. It's not hard to eavesdrop on 
talk because its data is sent in plaintext over the network. SafeTalk adds cryptography to this 
application, providing authentication for each end of the conversation and encryption for the 
conversation itself. 

SafeTalk builds on work that we've done elsewhere in this book: 

• The KeyManager class, from Chapter 5, is used to contain all the keys that SafeTalk uses. This 
class is used instead of a KeyStore derivative to keep the application reasonably simple. If we 
used a KeyStore implementation, we'd have had to implement certificate generation and 
handling as well. 

• SafeTalk exchanges a DES session key using ElGamal encryption. We need the ElGamal 
classes from Chapter 9, (with the exception of ElGamalSignature) and the Jonathan 
provider. 

SafeTalk, in essence, is a hybrid system, combining both symmetric and asymmetric ciphers (see 
Chapter 7, for more on hybrid systems). It uses an ElGamal (asymmetric) cipher to exchange a session 
key between the two ends of the conversation. The remainder of the conversation is encrypted using a 
DES (symmetric) cipher and the session key. 

10.1 Using SafeTalk 

The SafeTalk window is shown in Figure 10.1. The top part of the window is split between two text 
areas. You can type in the top text area. Whatever you type is transmitted to the person on the other 
end of your conversation. The lower text area displays the text that is received from the other end of 
the conversation. 

Figure 10.1. The SafeTalk window 

 

10.1.1 First-Time Setup 

To use SafeTalk, you'll first have to generate a key file. This involves picking a name for yourself and 
generating a key pair. SafeTalk will use this key pair to authenticate you and exchange a session key. 
SafeTalk expects ElGamal keys of any size in a key file called Keys.ser. You should create this file in 
the same directory as the SafeTalk classes. Because we are using the KeyManager class from Chapter 
5, you can use KeyManager's command-line interface to create a new key file. For example, I use the 
following line to create a key file for "Jonathan" with 512-bit keys: 

C:\ java oreilly.jonathan.security.KeyManager -c Keys.ser Jonathan ElGamal 512 
Initializing the KeyPairGenerator... 
Generating the key pair... 
Done. 
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If you need to review KeyManager or its command-line options, see Chapter 5. 

This done, you can run SafeTalk by entering java SafeTalk. The SafeTalk window will pop up and 
will greet you by name. 

10.1.2 Exporting a Key 

Once you've generated a key file, you'll need to export your public key and distribute it to everyone 
with whom you want to converse. To do this, select your own name in the combo box next to the 
Connect button. Then press the Export key... button. Choose a file to hold the exported key. You 
can distribute this file to other SafeTalk users. You can export other people's public keys in the same 
manner.  

10.1.3 Importing a Key 

You need to import a public key for anyone with whom you wish to converse. You can import a public 
key by pressing the Import key... button. Choose the file that contains the key. The name 
corresponding to the public key will appear in the combo box next to the Connect button. SafeTalk 
can import only keys that were exported using SafeTalk. 

10.1.4 Starting a Conversation 

To start a conversation, you need to select a recipient from the combo box next to the Connect 
button. In Figure 10.1, Jonathan is selected as the recipient. You also need to indicate the IP address 
in the text field next to the combo box. When these fields are filled in, press Connect to start the 
conversation. (The text of this button switches between Connect and Disconnect.) There will be a 
short pause while SafeTalk starts up the conversation. 

10.1.5 Receiving a Conversation 

To receive a conversation, simply leave SafeTalk running. It listens for incoming calls. When a call is 
received, it is automatically accepted. SafeTalk is both a client and a server. You can use it as a client, 
to start a conversation, and it acts as a server, accepting incoming conversations. 

10.1.6 Loopback Testing 

You can test SafeTalk by using two instances running on the same computer. This presents two 
hurdles: 

• Each SafeTalk instance needs a different KeyManager file. You'll have to create two distinct 
key files, each representing a different identity. 

• By default, SafeTalk listens for conversations on port 7999 and initiates conversations on the 
same port. If two or more SafeTalk instances are running on the same machine, this won't 
work right. 

Fortunately, you can use command-line arguments to tell SafeTalk what key file and port numbers to 
use. The syntax is as follows: 

java SafeTalk [keyfile listenport connectport] [...] 

You can create as many SafeTalk instances as you want by specifying a key file and port numbers for 
each instance. Suppose you create key files in Keys.ser and Keys2.ser. You can create two SafeTalk 
instances that talk to each other with the following line: 

C:\  java SafeTalk Keys.ser 7999 8001 Keys2.ser 8001 7999 

One SafeTalk instance reads its keys from Keys.ser, listens on port 7999, and connects on port 8001. 
The other instance will read keys from Keys2.ser, listen on port 8001, and connect on port 7999. Of 
course, before you can start a conversation, you'll have to export and import the appropriate public 
keys.  
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10.2 Under the Hood 

Now that you know how to use SafeTalk, I'll explain how it works, starting with an overview of 
SafeTalk's architecture. After that, I'll walk you through the code for each class. 

10.2.1 Architecture 

The SafeTalk application has five major components. The Session class is the center of this universe; 
it manages the connection with a remote SafeTalk application. The other four classes orbit around 
Session, each with a specific job: 

• SessionServer listens for incoming socket connections and notifies Session if a connection 
is received. It exists primarily to isolate the action of listening for connections into a thread 
that's separate from the main application thread. 

• Receiver is used while a conversation is in progress. It lives in its own thread, listening for 
incoming data and notifying the Session . Session, in turn, notifies SafeTalk , and the 
incoming data is shown in the lower text area of the SafeTalk window. 

• The SafeTalk class itself is the GUI. It's a subclass of Frame. 

• KeyManager manages the user's key pair as well as the public keys of recipients. Session uses 
KeyManager when it exchanges a session key at the beginning of a conversation. SafeTalk 
uses KeyManager to import and export keys. This class is presented in Chapter 5. 

Figure 10.2 shows the relationships of the SafeTalk classes. 

Figure 10.2. SafeTalk architecture 

 

10.2.2 Session 

The Session class manages the niggly details of socket connections and session key exchange. 
Because it's a lengthy class, I'll briefly describe Session's methods before I get to the code itself. The 
following methods are used for connection management: 

• The connect() method starts a conversation. 

• The disconnect() method stops a conversation. 

• The isConnected() method indicates if a conversation is in progress. 
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Two methods are used to exchange data during a conversation: 

• send() is used to send data to the other end of the conversation. 

• A Receiver object receives data from the other end of the conversation. It calls Session's 
receiverData() callback method with any received data. 

The remainder of Session's methods are concerned with session key exchange: 

• initiateConnection() handles the key exchange aspects of starting a conversation with 
another SafeTalk instance. It is called by connect(). 

• When a connection is received by the SessionServer, Session's respondToConnection() is 
called. 

• The concatenate() and setupCipherStreams() methods are used by both 
initiateConnection() and respondToConnection(). 

As mentioned before, we use the KeyManager class from Chapter 5: 

import java.io.*; 
import java.net.*; 
import java.security.*; 
import java.security.spec.*; 
import javax.crypto.*; 
import javax.crypto.spec.*; 
 
import oreilly.jonathan.security.KeyManager; 
public class Session { 

Session uses member variables to keep track of the other parts of the SafeTalk application: 

  protected SafeTalk mSafeTalk; 
  protected KeyManager mKeyManager; 
  protected SessionServer mServer; 
  protected Receiver mReceiver = null; 

You can specify which ports Session will use for connections. Session listens on port mListenPort 
and initiates outgoing calls on mConnectPort. You can set these port numbers in the Session 
constructor. By default, SafeTalk creates a Session with both of these ports set to 7999: 

  protected int mListenPort; 
  protected int mConnectPort; 

Finally, Session uses the mSocket member variable to keep track of a Socket that represents its 
connection. A related member variable, mOut, is an OutputStream that writes data to mSocket: 

  protected Socket mSocket = null; 
  protected Writer mOut = null; 

When a Session is first created, it stores references to a SafeTalk and a KeyManager, for future 
reference. It also creates a SessionServer that listens for incoming connections: 

  public Session(SafeTalk s, KeyManager keyManager, 
      int listenPort, int connectPort) { 
    mSafeTalk = s; 
    mKeyManager = keyManager; 
    mListenPort = listenPort; 
    mConnectPort = connectPort; 
     
    mServer = new SessionServer(mListenPort, this); 
  } 

The connect() method attempts to start a conversation with a user at a remote IP address. First it 
tries to convert the IP address string to an InetAddress. Then connect() creates a socket connection 
to the given address. If this is successful, connect() calls initiateConnection() to begin the 
session key exchange: 

  public void connect(String user, String addressName) 
      throws Exception { 
    InetAddress address = InetAddress.getByName(addressName); 
    Socket client = new Socket(address, mConnectPort); 
    initiateConnection(client, user); 
 
  } 
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The disconnect() method stops a conversation in progress. It attempts to notify the remote end of 
the conversation by sending a zero byte.[1] disconnect() also notifies the GUI about the disconnection 
by calling sessionDisconnect() on the SafeTalk object: 

[1] The zero, like every other byte in the conversation, is encrypted and sent over the network and will most likely 
not be transmitted as a zero. The other end of the conversation must be correctly decrypting data in order to 
recognize the zero byte as the end of a conversation. 

  public synchronized void disconnect() { 
    try { 
      if (mSocket != null) { 
        mOut.write(0); 
        mOut.flush(); 
        mSocket.close(); 
      } 
      mSocket = null; 
      mOut = null; 
    } 
    catch (IOException ioe) {} 
     
    mSafeTalk.sessionDisconnect(); 
  } 

The isConnected() method is self-explanatory: 

public boolean isConnected() { return mSocket != null; } 

When you type text in the SafeTalk window, SafeTalk uses the send() method of Session to 
transmit the keystrokes to the other end of the conversation: 

  public void send(char c) { 
    try { mOut.write(c); mOut.flush(); } 
    catch (IOException ioe) {} 
  } 

Similarly, when the other end of the conversation sends data to us, Receiver calls the 
receiverData() method of Session. Session just passes this data on to the GUI, represented by 
mSafeTalk : 

  public void receiverData(String message) { 
    mSafeTalk.sessionData(message); 
  } 

The client side of SafeTalk's session key exchange is implemented in initiateConnection() . We'll 
call the side that initiates the conversation the client and the side that responds to the conversation 
the server. The key exchange works like this: 

1. The client randomly creates half of a DES session key and an IV to be used for the session 
cipher. 

2. The client encrypts both the key half and the IV using the public key of the server (the 
recipient). Only someone with the recipient's private key can decrypt this information. 

3. The client sends its name and the encrypted data from Step 2 to the server. 

4. The server decrypts this data using its private key. 

5. The server randomly creates the second half of the session key. 

6. The server encrypts the second key half and the IV using the client's public key. As possessor 
of the matching private key, only the client can decrypt this data. 

7. The server sends the encrypted data from Step 6 to the client. 

8. The client decrypts this data using its private key. 

At the end of the exchange, both the client and server have both halves of the key. They assemble them 
and use the result as a session key. Both the client and server have been authenticated by their use of 
private keys to decrypt session key information.[2] 

[2] Note that an attacker can still change or corrupt the data sent over the network connection. Message 
Authentication Codes (MACs) could be used to detect this kind of attack by ensuring the integrity of each piece of 
network data. SSL uses this approach. 
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On the client side, Session begins by creating the first half of the session key and an IV, using a 
SecureRandom : 

   public void initiateConnection(Socket s, String remoteName)  
      throws Exception { 
    mSocket = s; 
     
    byte[] firstHalf = new byte[4]; 
    SecureRandom sr = new SecureRandom(); 
    sr.nextBytes(firstHalf); 
    byte[] iv = new byte[8]; 
    sr.nextBytes(iv); 

Then this data is encrypted with the server's public key, which comes from the KeyManager. The 
concatenate() method simply glues two byte arrays together and returns the result: 

    Cipher cipher = Cipher.getInstance("ElGamal"); 
    cipher.init(Cipher.ENCRYPT_MODE, mKeyManager.getPublicKey(remoteName)); 
    byte[] ciphertext = cipher.doFinal(concatenate(firstHalf, iv)); 

Next, our name and the encrypted data is sent to the server: 

    DataOutputStream out = new DataOutputStream(mSocket.getOutputStream()); 
    out.writeUTF(mKeyManager.getName()); 
    out.writeInt(ciphertext.length); 
    out.write(ciphertext); 

At this point, the server decrypts the session key half and IV. The server then generates the second 
half of the session key and encrypts it and the IV with the client's public key. The encrypted data is 
sent back to the client. We receive it and decrypt it using our private key, which again comes from the 
KeyManager. Then we extract the second half of the session key, which is just the first four bytes of the 
decrypted data: 

    DataInputStream in = new DataInputStream(mSocket.getInputStream()); 
    byte[] remoteEncrypted = new byte[in.readInt()]; 
    in.read(remoteEncrypted); 
     
    cipher.init(Cipher.DECRYPT_MODE, mKeyManager.getPrivateKey()); 
    byte[] decrypted = cipher.doFinal(remoteEncrypted); 
    byte[] secondHalf = new byte[4]; 
    System.arraycopy(decrypted, 0, secondHalf, 0, secondHalf.length); 

Now we have both key halves and we're ready to start up the conversation. The 
setupCipherStream() method creates a DES key from the key halves and sets up the DES CFB 
ciphers that are used to encrypt and decrypt the conversation. After the streams are set up, the GUI is 
notified, via a call to sessionConnect() , that the conversation has started: 

    setupCipherStreams(firstHalf, secondHalf, iv); 
    mSafeTalk.sessionConnect(remoteName); 
  } 

Every Session has an associated SessionServer . The SessionServer's purpose in life is to listen for 
incoming connections. If one comes in, SessionServer calls respondToConnection() . This method 
is the mirror image of initiateConnection() ; in it, the Session acts as the server in the key-
exchange process. 

If a conversation is already in progress, the incoming connection is ignored: 

  public void respondToConnection(Socket s) 
      throws Exception { 
    // If we're already connected, dump the incoming call. 
    if (isConnected()) { 
      s.close(); 
      return; 
    } 
    mSocket = s; 

The first thing received from the client is the client's name. Next, the server gets a chunk of data, 
encrypted with its public key: 

    DataInputStream in = new DataInputStream(mSocket.getInputStream()); 
    String remoteName = in.readUTF(); 
    byte[] remoteEncrypted = new byte[in.readInt()]; 
    in.readFully(remoteEncrypted); 
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The data is decrypted using the server's private key: 

    Cipher cipher = Cipher.getInstance("ElGamal"); 
    cipher.init(Cipher.DECRYPT_MODE, mKeyManager.getPrivateKey()); 
    byte[] decrypted = cipher.doFinal(remoteEncrypted); 

The server pulls out the first half of the session key and the IV from this data: 

    byte[] firstHalf = new byte[4]; 
    System.arraycopy(decrypted, 0, firstHalf, 0, 4); 
    byte[] iv = new byte[8]; 
    System.arraycopy(decrypted, 4, iv, 0, 8); 

Then the second half of the session key is randomly generated. This half, plus the IV, is encrypted with 
the client's public key, which comes from our KeyManager: 

    byte[] secondHalf = new byte[4]; 
    new SecureRandom().nextBytes(secondHalf); 
     
    cipher.init(Cipher.ENCRYPT_MODE, mKeyManager.getPublicKey(remoteName)); 
    byte[] ciphertext = cipher.doFinal(concatenate(secondHalf, iv)); 

The server sends the ciphertext back to the client: 

    DataOutputStream out = new DataOutputStream(mSocket.getOutputStream()); 
    out.writeInt(ciphertext.length); 
    out.write(ciphertext); 

Now we have possession of both halves of the session key, and we're ready to start talking. The GUI is 
notified of the new conversation with a call to sessionRespond(): 

    setupCipherStreams(firstHalf, secondHalf, iv); 
    mSafeTalk.sessionRespond(remoteName); 
  } 

As mentioned earlier, the concatenate() method simply mashes two byte arrays into one larger 
array: 

  protected byte[] concatenate(byte[] a, byte[] b) { 
    byte[] r = new byte[a.length + b.length]; 
    System.arraycopy(a, 0, r, 0, a.length); 
    System.arraycopy(b, 0, r, a.length, b.length); 
    return r; 
  } 

The last method in Session, setupCipherStreams() , is called by both initiateConnection() and 
respondToConnection() . When the client and server have both halves of the session key, they call 
this method to set up the rest of the conversation. 

First, this method creates a key from the supplied key halves, using a SecretKeyFactory: 

  protected void setupCipherStreams(byte[] firstHalf, byte[] secondHalf, 
      byte[] iv) throws Exception { 
    byte[] keyBytes = concatenate(firstHalf, secondHalf); 
    SecretKeyFactory skf = SecretKeyFactory.getInstance("DES"); 
    DESKeySpec desSpec = new DESKeySpec(keyBytes); 
    SecretKey sessionKey = skf.generateSecret(desSpec); 

Our goal in this method is to create encrypted input and output streams. We'll use the 
CipherInputStream and CipherOutputStream classes for this. Additionally, because every keystroke 
in SafeTalk should be transmitted as it is typed, we need a stream cipher instead of a block cipher. To 
this end, we use DES in CFB mode. Actually, two cipher streams are needed, one to encrypt outgoing 
data and one to decrypt incoming data. 

    IvParameterSpec spec = new IvParameterSpec(iv); 
    Cipher encrypter = Cipher.getInstance("DES/CFB8/NoPadding"); 
    encrypter.init(Cipher.ENCRYPT_MODE, sessionKey, spec); 
    Cipher decrypter = Cipher.getInstance("DES/CFB8/NoPadding"); 
    decrypter.init(Cipher.DECRYPT_MODE, sessionKey, spec); 

Once the ciphers are created, it's a simple matter to create streams around them: 

    CipherOutputStream out = new CipherOutputStream( 
        mSocket.getOutputStream(), encrypter); 
    CipherInputStream in = new CipherInputStream( 
        mSocket.getInputStream(), decrypter); 
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Then an OutputStream is wrapped around the output stream. Session uses this OutputStream to 
send data to the far end of the conversation. We wrap a Receiver around the input stream. The 
Receiver just listens to the socket for incoming data.  

 
 
    mOut = new OutputStreamWriter(out, "UTF8"); 
 
    mReceiver = new Receiver(in, this); 
 
  } 
 
} 

10.2.3 SessionServer 

SessionServer listens on a certain port for incoming connections. If it receives one, it tells its 
associated Session object to respond to the connection. 

SessionServer is constructed with a port number and a reference to a Session object. It listens on 
the given port; if it receives a connection it notifies the given Session: 

import java.io.*; 
import java.net.*; 
 
public class SessionServer 
    implements Runnable { 
  protected int mListenPort; 
  protected Session mSession; 
  protected SafeTalk mSafeTalk; 
  protected ServerSocket mServer; 
   
  public SessionServer(int listenPort, Session s) { 
    mListenPort = listenPort; 
    mSession = s; 
   
    Thread t = new Thread(this); 
    t.start(); 
  } 
   
  public void run() { 
    try { 
      mServer = new ServerSocket(mListenPort); 
      while (true) { 
        Socket client = mServer.accept(); 
        mSession.respondToConnection(client); 
      } 
    } 
    catch (Exception e) { 
      System.out.println("SessionServer.run: " + e.toString()); 
    } 
  } 
} 

10.2.4 Receiver 

Receiver is just as single-minded as SessionServer. Once a connection is established, it listens for 
input and notifies the Session when it receives any. 

A Receiver is constructed with an InputStream and a Session. Any data received from the 
InputStream will be relayed to the Session. The main point of the Receiver class is to move the data 
listening functionality into its own thread, separate from the rest of the application. 

Receiver expects to receive a single character at a time. If it receives a character with a value of 0, this 
is the signal for the end of the conversation. The conversation will also be ended if a -1 is received, 
signifying the end of the stream. 

import java.io.*; 
 
public class Receiver 
    implements Runnable { 
  protected Reader mIn; 
  protected Session mSession; 
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  public Receiver(InputStream in, Session session) 
      throws UnsupportedEncodingException { 
     mIn = new InputStreamReader(in, "UTF8"); 
     mSession = session; 
     
    Thread t = new Thread(this); 
    t.start(); 
  } 
   
  public void run() { 
    try { 
      boolean trucking = true; 
      while (trucking) { 
        int i = mIn.read(); 
        if (i == -1 || i == 0) 
          trucking = false; 
        else { 
          char c = (char)i; 
          mSession.receiverData(new String(new char[] { c })); 
        } 
      } 
    } 
    catch (IOException e) {} 
    mSession.disconnect(); 
 
  } 
 
} 

10.2.5 SafeTalk 

The SafeTalk class is the GUI for the entire application. SafeTalk is a Frame. It uses member 
variables to keep track of its buttons and text areas: 

import java.awt.*; 
import java.awt.event.*; 
import java.awt.swing.JScrollPane; 
import java.awt.swing.JTextArea; 
import java.io.*; 
import java.net.*; 
import java.security.*; 
import java.util.Enumeration; 
 
import oreilly.jonathan.security.KeyManager; 
 
public class SafeTalk 
    extends Frame 
    implements ActionListener, KeyListener { 
  protected JTextArea mSendArea, mReceiveArea; 
  protected Button mConnectButton; 
  protected Choice mUserChoice; 
  protected TextField mAddressField; 
  protected Button mImportButton, mExportButton; 
  protected Label mStatusLabel; 

SafeTalk also keeps references to a Session and a KeyManager as member variables: 

  protected KeyManager mKeyManager; 
  protected Session mSession; 

kEOL holds the local platform's newline character, and kBanner is part of a welcome message that's 
displayed when the SafeTalk window first appears: 

  protected static final String kEOL = System.getProperty("line.separator"); 
  protected static final String kBanner = "SafeTalk v1.0"; 

SafeTalk has two constructors, but the first ends up calling the second with default port values: 

public SafeTalk(KeyManager km) { this(km, 7999, 7999); } 
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The second constructor accepts a KeyManager and port numbers for incoming and outgoing calls. This 
constructor attempts to load the Jonathan provider (presented in Chapter 9): 

  public SafeTalk(KeyManager km, int listenPort, int connectPort) { 
    super(kBanner); 
     
    java.security.Provider p = new oreilly.jonathan.crypto.Provider(); 
    Security.addProvider(p); 

SafeTalk then configures its own display, using setupWindow() and wireEvents(): 

    setupWindow(); 
     
wireEvents(); 
    show(); 

Finally, SafeTalk's constructor creates a KeyManager from the given filename and a Session from 
the given incoming and outgoing ports. The populateUsers() method fills the combo box with the 
names of users for which the KeyManager has public keys: 

    setStatus("Loading keys..."); 
    mKeyManager = km; 
    populateUsers(); 
    mSession = new Session(this, mKeyManager, listenPort, connectPort); 

The setStatus() method displays informational messages in the SafeTalk window. Here, users are 
welcomed by name: 

   setStatus("Welcome to " + kBanner + ", " + mKeyManager.getName() + "."); 
  } 

Most of the work that SafeTalk does is triggered when a button is pressed. The Connect button 
serves two functions: If no conversation is in progress, it starts one. If a conversation is running, the 
Connect button terminates it. The text of the button switches to reflect its function. Thus, when the 
Connect button is pressed, either a new conversation is started or an existing conversation is 
stopped. Calls to setStatus() let the user know what is going on. 

  public void actionPerformed(ActionEvent ae) { 
    if (ae.getSource() == mConnectButton || 
        ae.getSource() == mAddressField) { 
      if (mSession.isConnected() == false) { 
        String user = mUserChoice.getSelectedItem(); 
        String addressName = mAddressField.getText(); 
        try { 
          mConnectButton.setEnabled(false); 
          setStatus("Connecting to " + user + " at " + 
              addressName + "..."); 
          mSession.connect(user, addressName); 
          mConnectButton.setLabel("Disconnect"); 
        } 
        catch (Exception e) { 
          setStatus(e.toString()); 
        } 
        finally { 
          mConnectButton.setEnabled(true); 
        } 
      } 
      else 
        mSession.disconnect(); 
    } 
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If the Import key... button is pressed, a FileDialog pops up. The user chooses a file that should 
contain a serialized name and public key. If the file is read successfully, the key gets added to the 
KeyManager and the KeyManager is saved. The populateUsers() method adds the names from the 
public key list into the drop-down box in the SafeTalk window: 

    else if (ae.getSource() == mImportButton) { 
      setStatus("Importing..."); 
      FileDialog d = new FileDialog(this); 
      d.show(); 
      String file = d.getFile(); 
      if (file == null) { 
        setStatus("Import canceled."); 
        return; 
      } 
      String name; 
      PublicKey key; 
      try { 
        ObjectInputStream in = new ObjectInputStream( 
            new FileInputStream(file)); 
        name = (String)in.readObject(); 
        key = (PublicKey)in.readObject(); 
        in.close(); 
        mKeyManager.addIdentity(name, key); 
        mKeyManager.save(); 
        populateUsers(); 
        setStatus("Imported " + name + "'s public key."); 
      } 
      catch (Exception e) { 
        setStatus(e.toString()); 
      } 
    } 

If the Export key... button is pressed, the public key of the person whose name is selected in the 
drop-down box is exported. Again, we pop up a FileDialog so the user can choose the destination 
file. 

    else if (ae.getSource() == mExportButton) { 
      String name = mUserChoice.getSelectedItem(); 
      setStatus("Exporting " + name + "'s public key..."); 
      FileDialog d = new FileDialog(this); 
      d.show(); 
      String file = d.getFile(); 
      if (file == null) { 
        setStatus("Export canceled."); 
        return; 
      } 
      try { 
        ObjectOutputStream out = new ObjectOutputStream( 
            new FileOutputStream(file)); 
        out.writeObject(name); 
        out.writeObject(mKeyManager.getPublicKey(name)); 
        out.close(); 
        setStatus("Exported " + name + "'s public key to " + file + "."); 
      } 
      catch (Exception e) { 
        setStatus(e.toString()); 
      } 
    } 
  } 

SafeTalk receives key events from its top text area. When a key is typed, SafeTalk gives it to its 
Session to send to the other end of the conversation: 

  public void keyPressed(KeyEvent ke) {} 
  public void keyReleased(KeyEvent ke) {} 
  public void keyTyped(KeyEvent ke) { 
    if (mSession.isConnected()) 
      mSession.send(ke.getKeyChar()); 
  } 
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sessionConnect() , sessionRespond() , and sessionDisconnect() are called by Session when a 
call is initiated, received, or ended. All we need to do is notify the user, using setStatus() , and set 
the label of the Connect button appropriately: 

  public void sessionConnect(String caller) { 
    setStatus("Connected to " + caller + "."); 
    mConnectButton.setLabel("Disconnect"); 
  } 
   
  public void sessionRespond(String caller) { 
    setStatus("Received connection from " + caller + "."); 
    mConnectButton.setLabel("Disconnect"); 
  } 
 
  public void sessionDisconnect() { 
    setStatus("Disconnected."); 
    mConnectButton.setLabel("Connect"); 
  } 

When Receiver receives data from the other end of the conversation, it is passed to Session, which 
in turn calls SafeTalk's sessionData() method. Basically, the received character is appended to the 
lower text area. There are a couple of special cases, however, for newlines and backspaces. 

  public void sessionData(String message) { 
    if (message.equals("\n") || message.equals("\r") || 
        message.equals("\r\n")) 
      message = kEOL; 
    if (message.equals("\b")) { 
      String full = mReceiveArea.getText(); 
      int length = full.length(); 
      if (length > 0) { 
        int toRemove = 1; 
        if (full.endsWith(kEOL)) 
          toRemove = kEOL.length(); 
        mReceiveArea.setText(full.substring(0, length - toRemove)); 
      } 
      return; 
    } 
    mReceiveArea.append(message); 
  } 

The setStatus() method is used to change the status line in the SafeTalk window. It is the main 
method that can be used to let the user know what's going on in the application. 

  protected void setStatus(String message) { 
    mStatusLabel.setText(message); 
  } 

The setupWindow() method creates all the window's components and places them appropriately: 

  protected void setupWindow() { 
    setFont(new Font("TimesRoman", Font.PLAIN, 12)); 
    setSize(320, 300); 
    setLocation(100, 100); 
     
    setLayout(new BorderLayout()); 
     
    Panel p; 
    p = new Panel(new GridLayout(2, 1)); 
    p.add(new JScrollPane(mSendArea = new JTextArea(40, 12))); 
    p.add(new JScrollPane(mReceiveArea = new JTextArea(40, 12))); 
    mReceiveArea.setEditable(false); 
    add(p, BorderLayout.CENTER); 
     
    p = new Panel(new GridLayout(3, 1)); 
    Panel p1 = new Panel(new FlowLayout()); 
    p1.add(mConnectButton = new Button("Connect to")); 
    p1.add(mUserChoice = new Choice()); 
    mUserChoice.add("Users"); 
    p1.add(mAddressField = new TextField(20)); 
    p.add(p1); 
    p1 = new Panel(new FlowLayout()); 
    p1.add(mImportButton = new Button("Import key...")); 
    p1.add(mExportButton = new Button("Export key...")); 
    p.add(p1); 
    p.add(mStatusLabel = new Label("[Status text]")); 
    add(p, BorderLayout.SOUTH); 
  } 
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The wireEvents() method sets up the event listeners for the window's components. The SafeTalk 
window actually ends up receiving most of the events; the event handlers for the buttons and the text 
area have already been presented. 

  protected void wireEvents() { 
    addWindowListener(new WindowAdapter() { 
      public void windowClosing(WindowEvent e) { 
        dispose(); 
        System.exit(0); 
      } 
    }); 
     
    mConnectButton.addActionListener(this); 
    mAddressField.addActionListener(this); 
    mSendArea.addKeyListener(this); 
     
    mImportButton.addActionListener(this); 
    mExportButton.addActionListener(this); 
  } 

The populateUsers() method reads names from the KeyManager's list of public keys. It then puts the 
names in the drop-down box in the SafeTalk window: 

  protected void populateUsers() { 
    mUserChoice.removeAll(); 
    Enumeration e = mKeyManager.identities(); 
    while (e.hasMoreElements()) 
      mUserChoice.add(((Identity)e.nextElement()).getName()); 
    mUserChoice.add(mKeyManager.getName()); 
  } 

The hard work is finished. All main() has to do is create a SafeTalk(): 

  public static void main(String[] args) throws Exception { 
    if (args.length == 0) { 
      new SafeTalk(KeyManager.getInstance("Keys.ser")); 
    } 

If you include command-line arguments when running SafeTalk, they will be interpreted in clusters 
of threes. Each cluster contains a key filename, a listening port number, and a connecting port 
number. This is useful for running more than one SafeTalk instance on one machine, as described in 
the section on loopback testing. 

    else { 
      for (int i = 0; i < args.length; i += 3) { 
        String keyfile = args[i]; 
        int listenport = Integer.parseInt(args[i + 1]); 
        int connectport = Integer.parseInt(args[i + 2]); 
        new SafeTalk(KeyManager.getInstance(keyfile), 
            listenport, connectport); 
      } 
 
    } 
 
  } 
 
} 
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Chapter 11. CipherMail 
CipherMail is a cryptographically enabled email client. It can send and receive encrypted, 
authenticated messages over the Internet. Like SafeTalk, CipherMail uses classes presented 
elsewhere in this book. 

• The KeyManager class, from Chapter 5, is used to keep track of all of CipherMail's keys. 

• The ElGamal cipher and signature classes, presented in Chapter 9, are used to encrypt a 
session key and to provide authentication. You'll also need the Jonathan cryptographic 
provider, oreilly.jonathan.security.Provider. 

• The base64 classes, BASE64Encoder and BASE64Decoder, are used to create ASCII mail 
messages from binary data. These classes are presented in Appendix B, Base64, as part of the 
oreilly.jonathan.util package. Alternately, if you wish, you can use the base64 classes 
with the same names from the sun.misc package, shipped as part of the JDK. 

CipherMail uses its own cryptographic message format in conjunction with standard Internet email 
transport protocols. CipherMail's use of standard email protocols makes it a tool that is widely useful. 
This approach, however, has some shortcomings. Specifically, CipherMail encrypts only the body of 
messages, not their headers. Even if you use CipherMail to encrypt your messages, other people can 
still find out quite a bit of information simply by examining the messages you send and receive. They'll 
know whom you're writing to, who writes to you, when you send and receive messages, and the subject 
lines of the messages. To do something more devious, like concealing the existence of the messages 
themselves, you'll have to create your own email protocol and a more elaborate set of software. As it 
stands now, CipherMail strikes a balance between the security of authenticated, confidential email 
messages and the convenience of standard Internet email protocols and infrastructure. 

11.1 Using CipherMail 

CipherMail's main window represents an in-box. The left part of the window contains a list of 
received messages, while the right part can display one of them at a time. As messages are selected in 
the left list, they are displayed in the right panel. Figure 11.1 shows the main window, with the fourth 
message selected and displayed. 

Figure 11.1. The CipherMail window 

 
The Get button retrieves mail messages from a mail server. The Compose... button pops up a second 
window where a new, outgoing message can be created. A text label at the bottom of the CipherMail 
window displays informative status messages. 
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Figure 11.2 shows how a CipherMail message looks in a conventional mail application.[1] Except for 
the "CipherMail:" identifier, the remainder of the message is a mess of base64 encoded data. The 
contents of your message are protected from eavesdroppers and spies. Note, however, that the 
existence of the message is not concealed, nor are the headers, including the subject line. 

[1] Eudora Light 3.0 is shown here. See http://www.eudora.com/. 

Figure 11.2. An encrypted CipherMail message in an ordinary mail client 

 

11.1.1 First-Time Setup 

Like any mail client, CipherMail needs to know some information about you and your mail servers. 
CipherMail retrieves mail from a POP3 server and sends mail using an SMTP server. Outgoing mail is 
encrypted using a random session key and signed using your private key. Before running CipherMail 
for the first time, you'll need a preferences file and a key file. 

11.1.1.1 Preferences 

CipherMail is configured through the use of a text file, called preferences . This file tells CipherMail 
about your mail servers and your identity. Here is a preferences file I use:[2] 

[2] Well, not exactly. I changed my POP3 password. 
POP3=m5.sprynet.com 
User=jknudsen 
Password=buendia 
SMTP=m5.sprynet.com 
Email=jknudsen@sprynet.com 
KeyManager=Keys.ser 

The POP3 and SMTP entries identify mail servers. The User and Password entries are used to log in to 
the POP3 server. The Email entry is used as the return address on outgoing mail. Finally, the 
KeyManager entry is a key file, as described in the next section. 

If you wish to use a different file to configure CipherMail, you can specify it on the command line. In 
the following example, CipherMail will read its configuration from prefsKristen: 

C:\ java CipherMail prefsKristen 

11.1.1.2 Keys 

You can create a key file using KeyManager's command-line interface, as described in Chapter 5. This 
is exactly the same technique we used in Chapter 10, in the SafeTalk application. CipherMail loads a 
key file based on the KeyManager entry in your preferences file. It should contain your own ElGamal 
key pair. Furthermore, it should contain public keys for anyone who might send you mail or anyone 
who will receive your mail. 

http://www.eudora.com/
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If you don't have the public key of someone who sends you mail, you can still decrypt the message. 
You just won't be able to verify the sender's signature. CipherMail will decrypt and display the 
message as usual. It will complain about not being able to verify the message's signature by printing a 
warning message in CipherMail's status line. 

You can create a key file using KeyManager 's -c option. The following line creates a new key file, 
Keys.ser, and populates it with a 512-bit ElGamal key pair. The signer's name is Jonathan. 

C:\ java oreilly.jonathan.security.KeyManager -c Keys.ser Jonathan ElGamal 512 
Initializing the KeyPairGenerator... 
Generating the key pair... 
Done. 

To export a key from your key file, use the -e option. The following example exports Jonathan's public 
key to a file called JonathanKey.ser : 

C:\ java oreilly.jonathan.security.KeyManager -e Keys.ser Jonathan 
  JonathanKey.ser 
Done. 

You should distribute this file to anyone interested in sending you mail and anyone who will receive 
mail from you. Make sure you distribute this file securely: Put it on a floppy disk and hand the disk to 
your correspondents, or transmit the file over an SSL connection. When you receive exported key files 
from other people, you can import them as follows: 

C:\ java oreilly.jonathan.security.KeyManager -i Keys.ser KristenKey.ser 
Done. 

11.1.2 Getting and Reading Mail 

To get mail, press the Get button. CipherMail will connect to your POP3 server and retrieve your 
mail. (CipherMail retrieves the messages without deleting them from the server.) The subject line of 
each message is displayed in the left part of CipherMail's main window. To view a particular message, 
click on its subject; the text of the message will be displayed in the right part of the window. Normal 
messages are shown directly. Encrypted messages will be decrypted and displayed. If you receive 
encrypted messages, you must have the sender's public key in your key file. Otherwise, the message's 
signature cannot be verified.  

11.1.3 Sending Mail 

To create a new message, press the Compose... button. This pops up the composition window, 
shown in Figure 11.3. It contains fields for entering the recipient's email address and the subject of the 
email. The third field, labeled Key, is used to choose the key name of the intended recipient. 
CipherMail will use this name to find a public key in your key file. When the message is done, clicking 
the Send button causes CipherMail to encrypt the message body and send the message to its 
destination. 

Figure 11.3. Creating a new message 
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11.2 Under the Hood 

11.2.1 Architecture 

The nucleus of CipherMail is the Message class, which encapsulates an email message. The other four 
classes of the CipherMail application use the Message class as follows: 

• POP3 manages a connection to a POP3 mail server. It receives email messages from the server 
and converts them to Message instances. 

• SMTP manages a connection to an SMTP mail server. It can take a Message instance and 
convert it into an outgoing email message. 

• Composer is a window that is used to create new Messages. 

• CipherMail, the main application window, keeps a list of Messages (the in-box) and can 
display the contents of messages. 

Of these classes, CipherMail is the only one that knows anything about cryptography. Message only 
encapsulates message data, not caring whether its contents are encrypted. POP3 and SMTP understand 
how to exchange Messages with mail servers. And Composer creates a new, unencrypted Message . It 
is CipherMail that encrypts the contents of messages before they are sent out and decrypts their 
contents before they are displayed. 

Like SafeTalk, CipherMail uses a KeyManager to keep track of cryptographic keys. The KeyManager 
class is presented in Chapter 5. 

Figure 11.4 shows how Message objects are passed among the CipherMail classes. The POP3 class, for 
example, retrieves Messages from the Internet and passes them to CipherMail. The Composer 
window creates a new Message, which it gives to CipherMail; CipherMail uses an SMTP object to 
send the Message out to the Internet. The KeyManager supplies CipherMail with cryptographic keys. 

Figure 11.4. CipherMail architecture 

 

11.2.2 Message Format 

The Message class encapsulates standard email messages, as described by RFC 822 
(ftp://ds.internic.net/rfc/rfc822.txt). However, the body of an encrypted message is encoded in a 
format that is specific to the CipherMail application. 

ftp://ds.internic.net/rfc/rfc822.txt
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At the top level, the message body contains the string "CipherMail:" followed by an arbitrary-length 
string of base64 (see Figure 11.2). The body is base64 encoded to ensure safe delivery through the 
Internet. (Some of the mail servers between you and your recipient may transmit only seven bits of 
data per byte of message body. The encryption algorithms we use produce arrays of eight-bit bytes. 
Encoding this "raw" data in base64 ensures that no bits will be lost.) 

Inside the base64 string are these items: 

• The sender's name 

• The session cipher IV 

• An encrypted session key 

• The signature of the decrypted body 

• The encrypted body 

Let's say Kristen wants to send a message to Jonathan. Kristen already has a key pair for ElGamal 
encryption and signatures. She also must know Jonathan's public key. Kristen's CipherMail goes 
through the following procedure to create an outgoing message: 

1. First, a signature for the message body is generated, using Kristen's private key. 

2. Next, a random session key is generated. 

3. The session key is used with a symmetric cipher (DES in CBC mode) to encrypt the message 
body. 

4. The session key is encrypted using an asymmetric cipher (ElGamal) and Jonathan's (the 
recipient's) public key. Only Jonathan's private key can be used to decrypt the session key. 

5. Kristen's name, the IV, the encrypted session key, the body signature, and the encrypted body 
are all mashed into a byte array and encoded as base64. The string "CipherMail:" is 
prepended to the base64 string, and the whole thing makes up the body of the email message. 

Jonathan, likewise, has an ElGamal key pair and knows Kristen's public key. When he receives the 
message, his CipherMail follows these steps to decrypt the incoming message: 

1. If the body of the message begins with "CipherMail:", the message is assumed to be encrypted. 
The remainder of the message is a base64 string. 

2. The base64 string is decoded to a byte array. 

3. The byte array is parsed into the sender's name (Kristen), the IV, the encrypted session key, 
the body signature, and the encrypted body. 

4. The session key is decrypted using Jonathan's private key. 

5. The body is decrypted using the decrypted session key and the supplied IV. 

6. The body signature is verified using Kristen's public key. 
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11.2.3 Message 

The Message class encapsulates an email message. A Message consists of headers and a body. Each 
header has a name and a value, separated by a colon. Each header takes one or more lines of the 
message. A blank line separates the headers from the body of the message. Here is a typical, 
unencrypted message: 

From: kknudsen@geocities.com 
Date: Tue, 16 Dec 1997 13:36:28 -0500 
To: jonathan@oreilly.com 
Subject: Chapter 11 
Status: 
 
Hi Jonathan, 
 
I've marked up the changes to Chapter 11.  I'll leave the 
manuscript in the hollow oak tree by the river. 
 
Kristen 

In the Message class, we keep track of the headers using a Hashtable. The header names are the 
Hashtable keys, and the header values are the Hashtable values. A String member variable holds 
the message body. 

import java.io.*; 
import java.util.Enumeration; 
import java.util.Hashtable; 
 
public class Message { 
  protected Hashtable mHeaders = new Hashtable(); 
  protected String mBody; 

A class variable, kEOL, holds the value of a newline: 

public static final String kEOL = "\r\n"; 

Message's first constructor accepts no arguments. It is used when CipherMail creates new outgoing 
messages: 

public Message() {} 

The second constructor reads the message headers and body from the supplied BufferedReader. 
First, we read and parse the headers. Lines that start with whitespace are continuations of the 
previous line's header. All other lines are parsed by finding the colon that separates the header name 
and value. 

  public Message(BufferedReader in) throws IOException { 
    // Read headers. 
    String line; 
    String key = null; 
    while ((line = in.readLine()).equals("") == false) { 
      if (line.startsWith("\t") || line.startsWith(" ")) { 
        if (key != null) { 
          // Add to previous key. 
          String value = (String)mHeaders.get(key); 
          value += kEOL + line; 
          mHeaders.put(key, value); 
        } 
      } 
      else { 
        int colon = line.indexOf(": "); 
        if (colon != -1) { 
          key = line.substring(0, colon); 
          String value = line.substring(colon + 2); 
          mHeaders.put(key, value); 
        } 
      } 
    } 
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A blank line separates the headers from the body. Once this blank line is read, the body can be read. 
When we read a message from a POP3 mail server, a line with a single period on it signifies the end of 
the body: 

    // Read body. 
    StringBuffer body = new StringBuffer(); 
    while ((line = in.readLine()).equals(".") == false) 
      body.append(line + kEOL); 
    mBody = body.toString(); 
  } 

You can find out the value of a particular header using getHeader() . This method simply asks the 
Hashtable for the value corresponding to the header name: 

  public String getHeader(String key) { 
    return (String)mHeaders.get(key); 
  } 

You can set the value of a header field with setHeader() . Composer uses this method when it creates 
new messages. 

  public void setHeader(String key, String value) { 
    mHeaders.put(key, value); 
  } 

The getBody() and setBody() methods are self-explanatory: 

  public String getBody() { return mBody; } 
  public void setBody(String body) { mBody = body; } 

The getHeaders() method returns a String containing all the correctly formatted message headers. 
It simply dumps out all the key and value pairs from the internal Hashtable, printing each with a 
colon between the header name and value: 

  public String getHeaders() { 
    StringBuffer sb = new StringBuffer(); 
    Enumeration e = mHeaders.keys(); 
    while (e.hasMoreElements()) { 
      String key = (String)e.nextElement(); 
      String value = (String)mHeaders.get(key); 
      sb.append(key + ": " + value + kEOL); 
    } 
    return sb.toString(); 
  } 

getFull() returns the same thing as getHeaders(), except with the message body appended: 

  public String getFull() { 
    StringBuffer sb = new StringBuffer(); 
    sb.append(getHeaders()); 
    sb.append(kEOL); 
    sb.append(getBody()); 
    return sb.toString(); 
  } 
} 

11.2.4 POP3 

The POP3 class manages a connection to a POP3 server, used for retrieving email. It implements only 
the subset of POP3 commands that we need for CipherMail. If you want to read more about POP3, 
refer to RFC 1725, available at ftp://ds.internic.net/rfc/rfc1725.txt. 

The POP3 class uses member variables to keep track of the connection to the POP3 server and its 
associated input and output streams: 

import java.io.*; 
import java.net.*; 
import java.text.*; 
import java.util.StringTokenizer; 
 
public class POP3 { 
  Socket mSocket = null; 
  PrintWriter mOut; 
  BufferedReader mIn; 

ftp://ds.internic.net/rfc/rfc1725.txt
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Upon construction, the POP3 establishes a connection to the POP3 server and sets up the input and 
output streams. It then checks for a welcoming message using the getOK() method, which we'll look 
at later. 

  public POP3(String host) throws IOException { 
    mSocket = new Socket(host, 110); 
    mOut = new PrintWriter(mSocket.getOutputStream(), true); 
    mIn = new BufferedReader( 
        new InputStreamReader(mSocket.getInputStream())); 
     
    getOK(); 
  } 

POP3 servers accept a username and password for login. Note that this is not secure, as the password 
is transmitted in cleartext over the network. This is a well-known weakness of several popular Internet 
protocols, including telnet and FTP. The POP3 standard offers a stronger method of authentication; to 
find out more, read RFC 1725. Interestingly, CipherMail compensates for this deficiency. For 
example, someone might snoop on your POP3 username and password; this would enable him or her 
to retrieve your mail from the POP3 server. He or she can even delete messages from your server so 
that you never receive them. If the mail is encrypted using CipherMail, however, the attacker will not 
be able to read the messages without your private key. And even though it is easy to forge mail using 
SMTP, no one can create a CipherMail message that appears to be from you without possessing your 
private key. 

  public void login(String user, String password) 
      throws IOException { 
    mOut.println("USER " + user); 
    getOK(); 
    mOut.println("PASS " + password); 
    getOK(); 
  } 

The size() method queries the POP3 server to find out how many messages are waiting: 

  public int size() throws IOException { 
    mOut.println("STAT"); 
    String line = getOK(); 
     
    int size = -1; 
    try { 
      StringTokenizer st = new StringTokenizer(line, " \t\r\n"); 
      st.nextToken(); // Skip status message. 
      NumberFormat nf = NumberFormat.getInstance(); 
      size = nf.parse(st.nextToken()).intValue(); 
    } 
    catch (ParseException e) {} 
    return size; 
  } 

You can retrieve messages by calling retrieve() . The message is returned as a Message object: 

  public Message retrieve(int index) throws IOException { 
    mOut.println("RETR " + index); 
    getOK(); 
     
    return new Message(mIn); 
  } 

When the POP3 session is finished, use the quit() method to sever the connection to the server: 

  public void quit() throws IOException { 
    mOut.println("QUIT"); 
    try { getOK(); } 
    catch (IOException ioe) {} 
    mSocket.close(); 
    mIn.close(); 
    mOut.close(); 
  } 
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The getOK() method checks for the OK message from the POP3 server. Any other response causes an 
IOException to be thrown. 

  protected String getOK() throws IOException { 
    String line = mIn.readLine(); 
    if (line.substring(0, 3).equals("+OK") == false) { 
      throw new IOException(line); 
    } 
    return line; 
  } 
} 

11.2.5 SMTP 

The SMTP class manages a connection to an SMTP server, used for sending email. Like the POP3 class, 
SMTP implements only the subset of SMTP that CipherMail needs. If you'd like to read more about 
SMTP, it's described in RFC 821, available from ftp://ds.internic.net/rfc/rfc821.txt. 

Like the POP3 class, SMTP uses member variables to keep track of the socket connection to the SMTP 
server and its associated streams: 

import java.io.*; 
import java.net.*; 
import java.text.*; 
import java.util.StringTokenizer; 
 
public class SMTP { 
  Socket mSocket = null; 
  PrintWriter mOut; 
  BufferedReader mIn; 

When an SMTP is constructed, it opens a connection to the specified host and sets up the associated 
input and output streams. It looks for a welcome message using the getResponse() method, which is 
presented later in this section. 

  public SMTP(String host) throws IOException { 
    mSocket = new Socket(host, 25); 
    mOut = new PrintWriter(mSocket.getOutputStream(), true); 
    mIn = new BufferedReader( 
        new InputStreamReader(mSocket.getInputStream())); 
     
    getResponse(); 
  } 

To log in to the SMTP server, you just have to provide your IP address: 

  public void send(String sender, Message m) throws IOException { 
    mOut.println("MAIL FROM: " + sender); 
    getResponse(); 
    mOut.println("RCPT TO: " + m.getHeader("To")); 
    getResponse(); 
    mOut.println("DATA"); 
    getResponse(); 
     
    mOut.write(m.getFull()); 
    mOut.println(); 
    mOut.println("."); 
    mOut.flush(); 
     
    getResponse(); 
  } 

The quit() method closes our connection with the SMTP server: 

  public void quit() throws IOException { 
    mOut.println("QUIT"); 
    try { getResponse(); } 
    catch (IOException ioe) {} 
    mSocket.close(); 
    mIn.close(); 
    mOut.close(); 
  } 

ftp://ds.internic.net/rfc/rfc821.txt
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Finally, the getResponse() method is used to check for a good response from the server. All SMTP 
server responses have a response code associated with them. Anything below 400 indicates success. If 
we receive a code of 400 or greater, an IOException is thrown, indicating an error was returned from 
the SMTP server: 

  protected String getResponse() throws IOException { 
    String line; 
    do line = mIn.readLine(); 
    while (mIn.ready()); 
     
    try { 
      NumberFormat nf = NumberFormat.getInstance(); 
      String codeString = line.substring(0, 3); 
      int code = nf.parse(codeString).intValue(); 
      if (code >= 400) 
        throw new IOException(line); 
    } 
    catch (ParseException pe) { 
      throw new IOException("No response code: " + line); 
    } 
    return line; 
  } 
} 

11.2.6 Composer 

Composer is the window that is used to create new messages. It is a subclass of Frame and contains 
member variables representing each of its controls: 

import java.awt.*; 
import java.awt.event.*; 
import java.io.*; 
import java.security.Identity; 
import java.util.Properties; 
import java.util.Enumeration; 
 
import oreilly.jonathan.security.KeyManager; 
 
public class Composer 
    extends Frame 
    implements ActionListener { 
  protected TextField mToField, mSubjectField; 
  protected Choice mKeyChoice; 
  protected TextArea mMessageArea; 
  protected Button mSendButton; 

The Composer class also contains a reference back to the CipherMail instance that created it. When 
the new message is finished, Composer will ask CipherMail to send the message: 

protected CipherMail mCipherMail; 

When a Composer is created, it simply sets up its GUI and event handling using setupWindow() and 
wireEvents() , which I'll get to later. populateKeys() is called to fill the combo box labeled Key 
with all the keys from the KeyManager: 

  public Composer(CipherMail cm, KeyManager km) { 
    super("New message"); 
    mCipherMail = cm; 
     
    setupWindow(); 
    populateKeys(km); 
    wireEvents(); 
    show(); 
  } 
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There's only one button on the Composer window, the Send button. If it is pressed, Composer 
constructs a new Message and tells the CipherMail object to send it. Then the Composer window 
dismisses itself by calling dispose() . 

  public void actionPerformed(ActionEvent ae) { 
    // Construct message. 
    Message m = new Message(); 
    m.setHeader("To", mToField.getText()); 
    m.setHeader("Subject", mSubjectField.getText()); 
    m.setBody(mMessageArea.getText()); 
    // Hide ourselves. 
    setVisible(false); 
    // Ask CipherMail to send it. 
    mCipherMail.sendMessage(m, mKeyChoice.getSelectedItem()); 
    // Clean up. 
    dispose(); 
  } 

The setupWindow() method simply places the Composer's components on the window: 

  protected void setupWindow() { 
    setFont(new Font("TimesRoman", Font.PLAIN, 12)); 
    setSize(450, 300); 
    setLocation(200, 200); 
     
    setLayout(new BorderLayout()); 
     
    Panel p = new Panel(new GridLayout(2, 1)); 
    Panel pi = new Panel(new FlowLayout()); 
    pi.add(new Label("To:")); 
    pi.add(mToField = new TextField(32)); 
    p.add(pi); 
    pi = new Panel(new FlowLayout()); 
    pi.add(new Label("Subject:")); 
    pi.add(mSubjectField = new TextField(16)); 
    pi.add(new Label("Key:")); 
    pi.add(mKeyChoice = new Choice()); 
    p.add(pi); 
    add(p, BorderLayout.NORTH); 
 
    add(mMessageArea = new TextArea(40, 12), BorderLayout.CENTER); 
    mMessageArea.setFont(new Font("Courier", Font.PLAIN, 12)); 
     
    p = new Panel(new FlowLayout()); 
    p.add(mSendButton = new Button("Send")); 
    add(p, BorderLayout.SOUTH); 
  } 

The wireEvents() method sets up Composer's event handling. First, it creates an inner class that will 
close the window when the Close button is pressed. Second, it sets up the Composer to receive 
ActionEvents when the Send button is pressed. 

  protected void wireEvents() { 
    addWindowListener(new WindowAdapter() { 
      public void windowClosing(WindowEvent e) { 
        dispose(); 
      } 
    }); 
     
    mSendButton.addActionListener(this); 
  } 

Finally, populateKeys() reads all the key names from the supplied KeyManager and puts them in the 
Key combo box: 

  protected void populateKeys(KeyManager km) { 
    mKeyChoice.removeAll(); 
    Enumeration e = km.identities(); 
    while (e.hasMoreElements()) 
      mKeyChoice.add(((Identity)e.nextElement()).getName()); 
    mKeyChoice.add(km.getName()); 
  } 
} 
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11.2.7 CipherMail 

The CipherMail class contains both the main GUI for the application as well as all the logic for 
encrypting and decrypting messages. As we walk through the class, I'll skim over the GUI 
implementations and spend more time on the cryptography. 

import java.awt.*; 
import java.awt.event.*; 
import java.io.*; 
import java.security.*; 
import java.util.Properties; 
 
import javax.crypto.*; 
import javax.crypto.spec.*; 
 
import oreilly.jonathan.security.KeyManager; 
 
public class CipherMail 
    extends Frame 
    implements ActionListener, ItemListener { 
  protected List mMessageList; 
  protected TextArea mMessageArea; 
  protected Button mGetButton, mComposeButton; 
  protected Label mStatusLabel; 
   
  protected Properties mPreferences; 
  protected Message[] mMessages; 
  protected KeyManager mKeyManager; 
   
  protected static final String kBanner = "CipherMail v1.0"; 

CipherMail's constructor sets up the GUI for the window and loads the indicated preferences file: 

  public CipherMail(String preferencesFile) throws Exception { 
    super(kBanner); 
     
    setupWindow(); 
    wireEvents(); 
    setVisible(true); 
     
    loadPreferences(preferencesFile); 
         
    setStatus("Welcome to " + kBanner + ", " + mKeyManager.getName() + "."); 
  } 

The CipherMail window has just two buttons. If you press the Get button, the getMessages() 
method is called to retrieve messages from the POP3 server. If you press the Compose... button, a 
new Composer window is created. 

  public void actionPerformed(ActionEvent ae) { 
    if (ae.getSource() == mGetButton) 
      getMessages(); 
    else if (ae.getSource() == mComposeButton) 
      new Composer(this, mKeyManager); 
  } 

ItemEvents are delivered to this class when different items are selected in the message list on the left 
side of the CipherMail window. Whenever you select an item, we show the matching message by 
calling selectMessage(): 

  public void itemStateChanged(ItemEvent e) { 
    if (e.getStateChange() == ItemEvent.SELECTED) { 
      selectMessage(mMessageList.getSelectedIndex()); 
    } 
  } 
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The selectMessage() method shows the headers and body of the specified message in the right text 
area in CipherMail's main window. It attempts to decrypt the body of the message with decrypt() . 
If the message body was not encrypted, decrypt() returns it unchanged. selectMessage() also sets 
the title bar of the CipherMail window with the subject and sender of the message. 

  protected void selectMessage(int index) { 
    Message m = mMessages[index]; 
    try { mMessageArea.setText(m.getHeaders() + 
        "\r\n" + decrypt(m.getBody())); } 
    catch (Exception e) { mMessageArea.setText(e.toString()); } 
    String d = m.getHeader("Subject") + 
        "[" + m.getHeader("From") + "]"; 
    setTitle(d); 
  } 

When the Get button is pressed, getMessages() is called to retrieve messages from the POP3 server. 
A POP3 object is used to manage the server connection. The server name, username, and password are 
pulled out of the user's preferences file. As messages are retrieved, they are added to CipherMail's 
internal message list (mMessages) and added to the message list on the left side of the CipherMail 
window. The first message received is displayed immediately. 

  protected void getMessages() { 
    try { 
      String host = mPreferences.getProperty("POP3"); 
      String user = mPreferences.getProperty("User"); 
      String password = mPreferences.getProperty("Password"); 
      // Clean out current messages. 
      mMessageList.removeAll(); 
      setTitle(kBanner); 
      mMessageArea.setText(""); 
      // Open POP3 connection. 
      setStatus("Connecting to " + host + "..."); 
      POP3 pop3 = new POP3(host); 
      // Login. 
      setStatus("Logging in as " + user); 
      pop3.login(user, password); 
      // Get messages. 
      setStatus("Checking message list size..."); 
      int size = pop3.size(); 
      mMessages = new Message[size]; 
      for (int i = 1; i <= size; i++) { 
        setStatus("Retrieving message " + i + " of " + size + "..."); 
        Message m = pop3.retrieve(i); 
        mMessages[i - 1] = m; 
        String d = m.getHeader("Subject") + 
            "[" + m.getHeader("From") + "]"; 
        mMessageList.add(d); 
        // Display the first one right away. 
        if (i == 1) { 
          mMessageList.select(0); 
          selectMessage(0); 
        } 
      } 
       
      // Clean up. 
      setStatus("Cleaning up..."); 
      pop3.quit(); 
      setStatus("Done."); 
    } 
    catch (IOException ioe) { 
      setStatus(ioe.toString()); 
    } 
  } 
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When a message is created in a Composer window, it is sent using CipherMail's sendMessage() 
method. This method uses an SMTP object to handle the details of communicating with the SMTP host. 
The SMTP server and return email address are pulled from the user's preferences file. The original 
body of the message is encrypted. The encrypted body is substituted for the original message body 
before it is sent to the SMTP server. 

  public void sendMessage(Message m, String remoteName) { 
    try { 
      String host = mPreferences.getProperty("SMTP"); 
      String email = mPreferences.getProperty("Email"); 
      // Encrypt the message body. 
      String body = m.getBody(); 
      try { m.setBody(encrypt(body, remoteName)); } 
      catch (Exception e) { 
        System.out.println("encrypt: " + e.toString()); 
        setStatus("Sorry, that message couldn't be sent: " + e.toString()); 
        return; 
      } 
      // Send the message. 
      setStatus("Connecting to " + host + "..."); 
      SMTP smtp = new SMTP(host); 
      smtp.login(); 
      setStatus("Sending message..."); 
      smtp.send(email, m); 
      setStatus("Cleaning up..."); 
      smtp.quit(); 
      setStatus("Done."); 
    } 
    catch (IOException ioe) { 
      setStatus(ioe.toString()); 
    } 
  } 

The encrypt() method encrypts a message body, as described in the section on the CipherMail 
message format. First, encrypt() gathers your name, your private key, and the recipient's public key 
using the KeyManager: 

  protected String encrypt(String body, String theirName) throws Exception { 
    setStatus("Gathering keys..."); 
    String ourName = mKeyManager.getName(); 
    PrivateKey ourPrivateKey = mKeyManager.getPrivateKey(); 
    PublicKey theirPublicKey = mKeyManager.getPublicKey(theirName); 

Next, a session key is created. The session key will be used to encrypt the body of the message: 

    // Create a session key. 
    setStatus("Creating a session key..."); 
    KeyGenerator kg = KeyGenerator.getInstance("DES"); 
    kg.init(new SecureRandom()); 
    Key sessionKey = kg.generateKey(); 
    // Encrypt message body. 
    setStatus("Encrypting the message..."); 
    byte[] bodyPlaintext = body.getBytes(); 
    Cipher cipher = Cipher.getInstance("DES/CBC/PKCS5Padding"); 
    cipher.init(Cipher.ENCRYPT_MODE, sessionKey); 
    byte[] iv = cipher.getIV(); 
    byte[] bodyCiphertext = cipher.doFinal(bodyPlaintext); 

The session key itself is encrypted, using the public key of the recipient. Only someone with the 
recipient's private key can decrypt the session key. This gives us some assurance that only the 
intended recipient of the message will be able to read it. 

    // Encrypt session key. 
    setStatus("Encrypting the session key..."); 
    cipher = Cipher.getInstance("ElGamal"); 
    cipher.init(Cipher.ENCRYPT_MODE, theirPublicKey); 
    byte[] sessionKeyCiphertext = cipher.doFinal(sessionKey.getEncoded()); 

We also create a signature for the body plaintext. This gives the recipient a chance to authenticate us, 
the sender. 

    // Sign message body. 
    setStatus("Signing the message..."); 
    Signature s = Signature.getInstance("ElGamal"); 
    s.initSign(ourPrivateKey); 
    s.update(bodyPlaintext); 
    byte[] bodySignature = s.sign(); 
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Now we need to cram our name, the encrypted session key, the body signature, and the encrypted 
body into a base64 string. This string will be the new message body. We accomplish this in two steps. 
First, we convert all the data into a byte array, using a ByteArrayOutputStream. Second, we take the 
data in the ByteArrayOutputStream and convert it to base64. 

    // Embed everything in the new body. 
    setStatus("Constructing the encrypted message..."); 
    ByteArrayOutputStream byteStream = new ByteArrayOutputStream(); 
    DataOutputStream out = new DataOutputStream(byteStream); 
    // Send our name. 
    out.writeUTF(ourName); 
    // Send the session IV. 
    out.writeInt(iv.length); 
    out.write(iv); 
    // Send the encrypted session key. 
    out.writeInt(sessionKeyCiphertext.length); 
    out.write(sessionKeyCiphertext); 
    // Send the message signature. 
    out.writeInt(bodySignature.length); 
    out.write(bodySignature); 
    // Send the encrypted message. 
    out.writeInt(bodyCiphertext.length); 
    out.write(bodyCiphertext); 
     
    byte[] plaintext = byteStream.toByteArray(); 

To make encrypted messages easily recognizable, the "CipherMail:" string is added in front of the 
base64 data. When the data is converted to base64, it is one long string. We break up this string every 
40 characters and insert a newline: 

    // Convert to base64. 
    setStatus("Converting to base64..."); 
    oreilly.jonathan.util.BASE64Encoder base64 =  
        new oreilly.jonathan.util.BASE64Encoder(); 
    String unbroken = "CipherMail:" + base64.encode(plaintext); 
    StringBuffer broken = new StringBuffer(); 
    int length = unbroken.length(); 
    int lineLength = 40; 
    for (int i = 0; i < length; i += lineLength) { 
      int last = Math.min(i + lineLength, length); 
      broken.append(unbroken.substring(i, last)); 
      broken.append("\r\n"); 
    } 
    setStatus("Done encrypting."); 
    return broken.toString(); 
  } 

The decrypt() method reverses the message encryption process. If the message body doesn't start 
with "CipherMail:", we know the body is not encrypted and return it verbatim. 

  protected String decrypt(String body) throws Exception { 
    if (body.startsWith("CipherMail:") == false) 
      return body; 

Otherwise, we remove all the newlines in the message, leaving one long base64 string. 

    setStatus("Removing newlines..."); 
    String broken = body.substring(11); 
    StringBuffer unbroken = new StringBuffer(); 
    int last = 0; 
    int index = 0; 
    do { 
      index = broken.indexOf("\r\n", last); 
      if (index == -1) 
        unbroken.append(broken.substring(last)); 
      else 
        unbroken.append(broken.substring(last, index)); 
      last = index + 2; 
    } while (index != -1 && last < broken.length()); 
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The base64 string can be decoded into a byte array. We use a DataInputStream wrapped around a 
ByteArrayInputStream to extract data from this array. As you'll recall, it contains the sender's name, 
an encrypted session key, a signature, and an encrypted message body. 

    setStatus("Translating from base64..."); 
    oreilly.jonathan.util.BASE64Decoder base64 = 
        new oreilly.jonathan.util.BASE64Decoder(); 
    byte[] ciphertext = base64.decodeBuffer(unbroken.toString()); 
    DataInputStream in = new DataInputStream( 
        new ByteArrayInputStream(ciphertext)); 
    setStatus("Reading sender's name..."); 
    String theirName = in.readUTF(); 
    setStatus("Reading the IV..."); 
    byte[] iv = new byte[in.readInt()]; 
    in.read(iv); 
    setStatus("Reading encrypted session key..."); 
    byte[] sessionKeyCiphertext = new byte[in.readInt()]; 
    in.read(sessionKeyCiphertext); 
    setStatus("Reading signature..."); 
    byte[] bodySignature = new byte[in.readInt()]; 
    in.read(bodySignature); 
    setStatus("Reading encrypted message..."); 
    byte[] bodyCiphertext = new byte[in.readInt()]; 
    in.read(bodyCiphertext); 

CipherMail's KeyManager retrieves your name and your private key. The session key is decrypted 
using your private key: 

    // Decrypt the session key. 
    setStatus("Decrypting the session key..."); 
    String ourName = mKeyManager.getName(); 
    PrivateKey ourPrivateKey = mKeyManager.getPrivateKey(); 
    Cipher cipher = Cipher.getInstance("ElGamal"); 
    cipher.init(Cipher.DECRYPT_MODE, ourPrivateKey); 
    byte[] sessionKeyPlaintext = cipher.doFinal(sessionKeyCiphertext); 
    SecretKeyFactory skf = SecretKeyFactory.getInstance("DES"); 
    DESKeySpec desSpec = new DESKeySpec(sessionKeyPlaintext, 0); 
    SecretKey sessionKey = skf.generateSecret(desSpec); 

Once the session key is decrypted, the message body can be decrypted using the session key: 

    // Decrypt the body. 
    setStatus("Decrypting the body..."); 
    cipher = Cipher.getInstance("DES/CBC/PKCS5Padding"); 
    IvParameterSpec spec = new IvParameterSpec(iv); 
    cipher.init(Cipher.DECRYPT_MODE, sessionKey, spec); 
    byte[] plaintext = cipher.doFinal(bodyCiphertext); 

We can't authenticate the sender unless we verify his or her signature. CipherMail shows a message 
in the status line of the CipherMail window that indicates if the message signature was verified. If the 
sender's public key cannot be found in our KeyManager, we display an appropriate message: 

    // Verify the signature. 
    setStatus("Verifying the signature..."); 
    PublicKey theirPublicKey; 
    try { theirPublicKey = mKeyManager.getPublicKey(theirName); } 
    catch (NullPointerException npe) { 
      setStatus("***** Unable to verify " + 
          theirName + "'s signature: I don't have a key! *****"); 
      return new String(plaintext); 
    } 
    Signature s = Signature.getInstance("ElGamal"); 
    s.initVerify(theirPublicKey); 
    s.update(plaintext); 
    if (s.verify(bodySignature)) 
      setStatus(theirName + "'s signature verified."); 
    else 
      setStatus("***** Signature didn't verify! *****"); 
 
 
   return new String(plaintext); 
  } 
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The loadPreferences() method loads the named preferences file into a member variable, 
mPreferences. It also loads the KeyManager file specified in the preferences file: 

  protected void loadPreferences(String preferencesFile) throws Exception { 
    mPreferences = new Properties(); 
    FileInputStream in = new FileInputStream(preferencesFile); 
    mPreferences.load(in); 
    mKeyManager = KeyManager.getInstance( 
        mPreferences.getProperty("KeyManager")); 
  } 

CipherMail's status text line, at the bottom of the window, displays informative text for the user. The 
setStatus() method displays these status messages: 

  public void setStatus(String message) { 
    mStatusLabel.setText(message); 
  } 

setupWindow() constructs the CipherMail GUI: 

  protected void setupWindow() { 
    setFont(new Font("TimesRoman", Font.PLAIN, 12)); 
    setSize(500, 300); 
    setLocation(100, 100); 
     
    setLayout(new BorderLayout()); 
     
    Panel p; 
    p = new Panel(new BorderLayout()); 
    p.add(mMessageList = new List(), BorderLayout.WEST); 
    p.add(mMessageArea = new TextArea(40, 12), 
        BorderLayout.CENTER); 
    mMessageArea.setEditable(false); 
    mMessageArea.setFont(new Font("Courier", Font.PLAIN, 12)); 
    add(p, BorderLayout.CENTER); 
     
    p = new Panel(new GridLayout(2, 1)); 
    Panel p1 = new Panel(new FlowLayout()); 
    p1.add(mGetButton = new Button("Get")); 
    p1.add(mComposeButton = new Button("Compose...")); 
    p.add(p1); 
    p.add(mStatusLabel = new Label("[Status text]")); 
    add(p, BorderLayout.SOUTH); 
  } 

The wireEvents() method is used to set up the event handling for CipherMail. It creates an inner 
class, for closing CipherMail itself. The Get and Compose... buttons are configured to send 
ActionEvents to CipherMail. The message list will send ItemEvents to CipherMail as different 
message headers are selected. 

  protected void wireEvents() { 
    addWindowListener(new WindowAdapter() { 
      public void windowClosing(WindowEvent e) { 
        dispose(); 
        System.exit(0); 
      } 
    }); 
     
    mGetButton.addActionListener(this); 
    mComposeButton.addActionListener(this); 
     
    mMessageList.addItemListener(this); 
  } 

CipherMail's main()method simply instantiates a CipherMail. CipherMail will attempt to load its 
configuration information from the given preferences file, which by default is named preferences. 

  public static void main(String[] args) throws Exception { 
    String preferencesFile = "preferences"; 
    if (args.length > 0) preferencesFile = args[0]; 
    new CipherMail(preferencesFile); 
  } 
} 
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Chapter 12. Outside the Box 
Cryptography is a powerful tool, but it is only part of the application programmer's repertoire. To 
create a secure application, the programmer needs to see the entire system, analyze its weaknesses, 
and plug up the holes. The first 11 chapters of this book cover cryptographic programming in Java; in 
this chapter I'll point out some other noteworthy areas of security programming, with a specific focus 
on Java. If you're new to secure systems design, this chapter should open your eyes to secure systems 
design issues. A lot of things can go wrong with a secure system; I'll try to hit the high points in this 
chapter. 

12.1 Application Design 

The structure of your application affects the kind of attacks that can be made against it. In this section, 
I'll discuss security considerations in standalone applications as well as traditional client/server 
architectures. The section ends with a discussion of the pros and cons of using a web browser as your 
application's client platform. 

12.1.1 Self-Contained 

A self-contained application has all of its logic in one place. In Java, this means that all of the .class 
files it uses are on one machine. 

A self-contained application that does not make network connections has limited security 
requirements. The only threat in this type of application is that someone will steal its data. There are 
two ways this can happen, excluding more exotic surveillance techniques: 

• Someone will gain physical control of your computer and use it to steal your application's 
data. 

• Someone will gain virtual control of your computer and use it to steal your application's data. 

If you are concerned about data theft, you can encrypt your data before storing it on disk. This way, 
even if someone steals the data files, it will be hard to get any useful information out of them without 
your encryption key. The encryption key should not be stored on the computer, unless it is protected 
in some way. The PBE class, presented in Chapter 7, allows you to protect an encryption key with a 
passphrase. If you are lucky enough to have smart cards in your system, the smart card is a good place 
to store a key. If you are not so lucky, a floppy disk can serve as a poor man's smart card. 

Other self-contained applications do make network connections, like email clients and web browsers. 
Their security requirements are more complicated. These applications often require confidentiality 
and authentication. In an Internet-based credit card purchase, for example, both the buyer and the 
seller need proof of each other's identity (authentication). The buyer also wants to have his or her 
credit card number remain a secret (confidentiality). These things are possible, of course. Certificates 
and ciphers provide authentication and confidentiality services. 

But before you rush off to write a self-contained network application, make sure you know how the 
application will manage keys. The application needs to be able to access and verify certificates 
whenever it makes a remote connection. Where do the certificates come from? Who issues them? 
What happens when they expire? You can use the existing structure of Certificate Authorities and 
X.509 certificates or you can create your own, as best suits your application. Regardless, be aware that 
key management will probably be the hardest part of the application.  

12.1.2 Demonstration Software 

Another interesting application of cryptography is in "demo" software. Software vendors often 
distribute demonstration versions of software, that is, an application that has all but a few key features 
working. This allows people to try out the software before buying it. When somebody does decide to 
pay, the vendor gives the buyer a password that "unlocks" the rest of the application. This scheme is 
attractive to software vendors because it's akin to giving away free samples of drugs; someone's bound 
to get hooked and buy more. It's attractive to buyers, too, because they get to try a product before 
coughing up the money for it. Furthermore, when they do pay, there's instant gratification when the 
password is entered. The whole application is already there; nothing more need be downloaded. 
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Legions of 14-year-olds will "crack" the demo faster than you can say "Don't you have anything better 
to do?" Typically, they'll disassemble the code, a process of reverse engineering, and hardwire the 
demo to believe that it's a fully functioning version. This process is easier in Java than in other 
languages. (See the discussion, later in this chapter, on disassemblers and code obfuscators.) 

If you design your application properly, however, you could encrypt a few key .class files, leaving only 
the demo functionality unencrypted. When somebody buys the software, you could give the buyer a 
cryptographic key (based on the software's serial number) that would decrypt the rest of the 
application. This keeps your application safe from cracking. Of course, it doesn't stop someone who 
bought a copy from making copies for someone else, but that's always a problem, even with software 
that comes in a box. 

This scheme will make your distribution hairy. In particular, you would want each copy of your 
software to have a different decryption key, which means each copy needs to be encrypted separately. 
When a buyer calls up to buy the software, you need to figure out which key to send him or her. Each 
copy of the software should have a serial number. A master list would map serial numbers to 
decryption keys. You could simplify this by encrypting every 100, or 1000, copies of your software 
with the same key, but it's still a headache.[1] 

[1] Cranial pain, figurative or literal, seems to be a popular currency when paying for security. 

Alternately, you could encrypt each copy of the software with the same key and distribute part of the 
key with each copy. If the key value is k, you might distribute a random value rn with each copy. Each 
copy would have a complementary value such that rn un = k. When someone paid for the full version 
of your software, you would simply send them un, which could be combined with rn to produce the key, 
k. Then the rest of the software could be decrypted using k. This way, you only need to keep a list of 
partial keys, un, correlated to serial numbers. The weakness in this scheme is that all the copies of the 
software are encrypted with the same key. If someone figures out what the key is (possibly by buying a 
copy of the software), he or she can write a demo-cracker program that will work with every copy of 
your demo software.  

12.1.3 Client/Server 

Client/server architecture is typically two-tier or three-tier. In the two-tier architecture, many clients 
connect to a single server. In the three-tier version, there's an additional layer between the client and 
server, typically called the transaction layer or business layer. 

The client and server are really pieces of the same application, but they reside on different machines. 
The server typically contains a database that holds all the application's data. The client shows data to 
the user and will ask the server to make changes on the user's behalf. 

Client/server applications have the same authentication and confidentiality requirements as discussed 
for self-contained network applications. The server needs to be paranoid. Because the client is widely 
(and possibly freely) distributed, the server must assume that there will be mischievous users who will 
try to use the client to do things they're not supposed to do. More devious attacks may be launched by 
custom-built applications pretending to be clients. Thus, the authentication from client to server must 
be carefully designed and implemented. Authentication in the other direction is just as important. 
Clients need to know that they are connecting to the real server and not an imposter. 

Client/server applications also need to deal with access control. Once users are authenticated, their 
access to the server's resources is limited. The server needs to ensure that no clients are allowed to 
overstep their bounds. Note that this logic must be on the server. If it's on the client, someone could 
reprogram the client to perform illegal actions. 

Three-tier client/server applications are an extension of the two-tier architecture. They provide an 
attacker with more places to subvert the application: at the client, the middle tier, or the server. 
Authentication between the middle tier and the server is just as important as between the client and 
the middle tier.  
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12.1.4 Client Applets 

When developing a Java client/server application, a web browser seems like an attractive platform for 
the client. Making the client side of your application an applet means that anyone with a browser will 
be able to run the client. If you're trying to reach a wide audience, this is particularly compelling. 
Furthermore, the client applet is loaded from a web server, automatically. No client installation is 
required. 

On the other hand, applets have their share of problems. Netscape and Microsoft were slow to 
incorporate Java 1.1 into their browsers. You may have to develop your applet using an older version 
of Java, just to be sure it runs on the majority of browsers. Sun created something called the Porting 
and Tuning Center, which is supposed to keep browsers more synchronized with Java versions, but it's 
too early to tell if it'll work. 

Another possible snag is that different browsers all have their own Java implementations. Virtual 
machine and API bugs or inconsistencies may cause your applet trouble on some platforms. To 
overcome this hurdle, rigorous testing on the major platforms is necessary. 

And then there's that sandbox thing. By default, applets are limited in what they can do, which may 
cause trouble in your client/server paradise. If you can't work around the limitations of the sandbox, 
you'll need to resort to signed applets, as described in Chapter 8. But that's a big, nasty can of worms. 
It might just be easier to develop a standalone client application than to make it a signe d applet.  

12.1.5 Access Control 

A secure application controls access to its resources. Consider an application that runs a business. 
Typically, such an application presents a number of interfaces to a central database. One window lets 
the people who answer the phones enter orders into the database. Other windows might allow 
accountants to track sales and expenses. Businesses are secretive about their financial figures, so the 
order entry people probably can't access the financial windows. And probably the accountants 
shouldn't be allowed in any part of the application except the financial windows. 

An access control list (ACL) can implement these types of policy decisions. An ACL is simply a list of 
identities and the permissions they are allowed. In JDK 1.1, abstractions for implementing ACLs are 
provided in the java.security.acl package. In JDK 1.2, the problem of access control is better 
addressed. For a full description, see O'Reilly's Java Security. 

12.2 Decompilers and Bytecode Obfuscation 

On the Internet, protecting intellectual property has always been something of a joke, but not a very 
funny joke. Computers make it easy to copy information one time or a thousand times, and networked 
computers make it easy to distribute information. For people worried about royalties or per-use fees, 
the Internet is an ungodly nightmare. 

You, as a developer, may also be worried about protecting your intellectual property, your Java 
programs. What can other people find out from the class files of your programs? They can find out 
quite a lot, using something called a decompiler. Just as a compiler takes source code and creates class 
files, a decompiler takes class files and creates source code. A good decompiler produces source code 
that can be immediately recompiled. Decompiling is not a new technique; it can be applied to the 
binary executables of any operating system. Java's class file structure, however, makes it particularly 
easy to reproduce readable source code from executable class files. 

A popular decompiler is Hanpeter van Vliet's Mocha. Mocha is free, but you get what you pay for; it 
does have bugs, and it chokes on some Java 1.1 classes.[2] You can download Mocha from 
http://www.brouhaha.com/~eric/computers/mocha.html. A newcomer in the free decompiler arena 
is JAD, available at http://web.unicom.com.cy/~kpd/jad.html.  

[2] Hanpeter passed away in 1996, so Mocha is unsupported software. Borland seems to have incorporated 
Mocha into its JBuilder product, so presumably it now handles updates to Mocha. Borland has also made some 
claims to Mocha's licensing. Read the fine print carefully if you download this software. 

 

http://www.brouhaha.com/~eric/computers/mocha.html
http://web.unicom.com.cy/~kpd/jad.html
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If you're willing to pay for a decompiler, try WingDis (http://www.wingsoft.com/wingdis.shtml) or 
SourceAgain (http://www.ahpah.com/). Finally, the JDK itself has a tool, javap , that lets you 
examine the contents of a class file. Its output looks more like assembly code than Java. If you know 
how to read it, it's a clear explanation of how the class operates. 

How can you prevent your programs from being decompiled or disassembled? You can't, although you 
can slow down the process. To do this, you need a tool called a bytecode obfuscator . An obfuscator 
removes as much information as it can from your class files without rendering them inoperable. You 
can still run a decompiler on an obfuscated class file, but the resulting source code is less readable. 
Two free obfuscators are Hashjava and Jobe, available at http://www.sbktech.org/hashjava.html and 
http://www.primenet.com/~ej/index.html, respectively. Jshrink is a commercial obfuscator, available 
at http://www.e-t.com/jshrink.html. 

Another approach to foiling decompilation is to encrypt the class files of an application. The classes 
are decrypted as they are used, usually by a ClassLoader. In fact, this is a relatively simple thing to 
do, using a subclass of ClassLoader and a CipherInputStream. The hard part in this approach is 
figuring out where to keep the encryption key. If you keep it with the rest of the application, then it's 
pretty easy for a cracker to find the key and use it to decrypt your class files, which can then be 
decompiled. Suppose, instead, that you require the user to enter the key every time the application is 
run. This is inconvenient, at best, and offers no better protection - an attacker can pose as a legitimate 
user in order to receive the decryption key. The bottom line is that a scheme that encrypts class files 
offers little protection from decompilation. 

Given the ease of examining a program's innards, you can see why it's important to use strong 
cryptographic algorithms rather than relying on "secret" algorithms. Sooner or later, someone will 
figure out how your program works. When designing a secure system, assume from the start that your 
attackers have the entire source code of your program.  

12.3 Endpoint Security 

Most of cryptography is concerned with securing communications between two parties. This requires 
two elements: cryptography for authentication and session encryption, and trusted executable code at 
each endpoint. It's the "trusted executable code" that concerns us here. 

Think back to the SafeTalk application in Chapter 10. How could it be compromised by messing 
around with class files? 

• You could modify the javax.crypto.CipherOutputStream class to send plaintext to another 
IP address, unbeknownst to the user. 

• You could modify the Session class to always choose the same key for encryption. Intercepted 
communications could then be easily decrypted. 

And how would these class files be modified? A virus could do the work, or a rogue ActiveX control. If 
the class files come from a file server, they might be modified in transit from the server to your 
computer. 

An interesting paper describes how a Netscape exectuable was modified in transit from server to 
client, available at http://http.cs.berkeley.edu/~gauthier/endpoint-security.html. The technique of 
NFS spoofing described in the paper could easily be used to modify class files instead of binary 
executables. 

How can you prevent this kind of attack? Inside your application, there's nothing you can do because 
it's the class files of your application that get modified in this attack. Outside your application, you can 
take the following measures: 

• Don't use an insecure file transfer protocol to obtain executables. In the paper mentioned 
above, executable files obtained using NFS were modified in transit. 

• Scan for viruses, and scan frequently. 

http://www.wingsoft.com/wingdis.shtml
http://www.ahpah.com/
http://www.sbktech.org/hashjava.html
http://www.primenet.com/~ej/index.html
http://www.e-t.com/jshrink.html
http://http.cs.berkeley.edu/~gauthier/endpoint-security.html
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• Don't run insecure downloadable content. Unsigned Java applets are contained in the applet 
sandbox, and they should be safe (browser bugs notwithstanding). JavaScript™ is also 
constrained, although browser bugs can open up security holes. Unsigned ActiveX controls 
are just plain scary; they can control any aspect of your computer. Signed ActiveX controls are 
only slightly better; you can make an all-or-nothing security decision based on whether you 
trust the control's signer. Note, however, that once you let an ActiveX control go, it has free 
rein on your system; there's no way to constrain it with fine-grained policies, as you can with 
signed Java applets.  

12.4 File Security 

The files on a local disk can be vulnerable to theft or modification. If you're running any sort of server 
software, of course, you shouldn't keep anything private on the server machine. Even a machine 
without server software, however, is vulnerable to viruses, Trojan horses, and other types of 
skullduggery. It doesn't do much good to encrypt all your communications if someone can pull files off 
your local disk. 

If you're especially paranoid, you should encrypt any sensitive files on your local disk. Keep the key on 
a removable disk or a smart card, or use a passphrase (but don't write it down anywhere!). 

12.4.1 Serialization 

JDK 1.1 introduced the technique of object serialization , where Java objects can be written to streams 
and read from streams. By itself, object serialization offers nothing in the way of security. If you write 
objects out to a file, it's pretty easy for almost anyone to read the file and find out what's in it. Several 
of the examples in this book, for example, serialize a key to a file for later use. This offers no protection 
for the key, as it is stored in the clear in the file. To protect sensitive data, you can combine object 
serialization with an encrypted data stream (that is, wrap an ObjectOutputStream around a 
CipherOutputStream). Alternately, you might use a javax.crypto.SealedObject (see Chapter 7). 

12.4.2 Deleting Files 

A more subtle security risk comes from deleted files. Suppose you receive an encrypted message from 
a fellow freedom fighter. Naturally, you decrypt the message to read it. Then you delete the encrypted 
and decrypted files. 

Next day, the secret police search your house, but you stand tall, arms crossed, confident they won't 
find anything incriminating, after all, you deleted the files. Unfortunately for you, the secret police 
have an Undelete program. You are in big trouble. 

What happened? It turns out that many operating systems don't actually remove information from the 
disk when you delete a file. They simply mark the space as unused. When more files are saved, they 
overwrite this area of disk. 

How can you really delete a file? If you're worried about deleted files, you'll need to get some software 
that overwrites the file's space with random data a few times. Just overwriting the file once won't do it. 
There are still artifacts on the disk that can be used to reconstruct the file. This kind of software will be 
very specific to operating systems, not the kind of stuff that you can easily use from Java. If you are 
worried about undeleted files, you may need a solution that is more closely related to particular 
hardware than Java. 

12.4.3 Virtual Memory 

Virtual memory adds another unwelcome wrinkle to the problem of file security. Virtual memory is 
the technique of using part of a disk as additional computer memory. This allows the computer to run 
more applications simultaneously, at the cost of the relatively slow operations of swapping sections of 
memory to and from the disk. 

For developers of secure applications, this is just one more reason to start drinking heavily. It means 
that at any time during your application's execution, its memory space may be partially or fully written 
to disk. Attack programs could cruise through the virtual memory swap file, looking for private keys, 
plaintext, or other goodies. 
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As a developer, there's really nothing you can do about this because virtual memory is a feature of the 
operating system on which your program runs. Users who are concerned about these attacks should 
buy more real memory and disable virtual memory on their computers.  

12.4.4 Memory Scanning 

Even with virtual memory disabled, your application might still be snooped on by another application 
as it's running. Your computer might be running a virus or Trojan horse application that spends its 
life looking at other running applications, searching for private keys or other secret information. 

If you're worried about this kind of attack, you should use an operating system that isolates 
application memory spaces, preventing snooping.  

12.5 Network Security 

The Internet Protocol, the backbone of the Internet, is not a secure protocol. Although you can use an 
IP network securely, you need to apply cryptography on top of the IP network - in your application, for 
example. 

You should assume that every piece of data that you send or receive over a network can be observed, 
recorded, and replayed by an attacker. Likewise, don't trust any network traffic you receive without 
cryptographic authentication as proof of identity. I get chills down my spine every time I use ftp or 
telnet. Those applications still accept a password, in plaintext, as authentication. As we discussed in 
Chapter 6, it's a bad idea to send a password over the network. 

IPng (IP next generation) is a new protocol that can provide authentication and privacy at the protocol 
layer. If you'd like to read more, see http://playground.sun.com/pub/ipng/html/ipng-main.html. 

SafeTalk and CipherMail, presented in Chapter 10 and Chapter 11, show how you can use 
cryptography to provide authentication and confidentiality in networked Java applications. Even these 
applications, however, have some interesting shortcomings. Consider SafeTalk, for example. Even 
though it encrypts the contents of a conversation, it can't conceal the existence of the conversation. 
Even if your enemies can't understand what you and your friends are chatting about, you might not 
want your enemies to know that you're even talking. CipherMail has the same property: Even though 
the contents of your email messages are encrypted, anyone snooping on the network will still be able 
to see the message traveling from you to your recipient. Sometimes merely knowing that Person A is 
talking to Person B is enough for a clever spy to figure out what's going on.  

12.6 Summary 

In the end, security is a balancing act; you need to balance cost, risk, and usability. It costs time and 
money to make a system more secure. A secure system protects something valuable; the more valuable 
it is, the more you should spend on security. And in general, more secure systems are less usable. 

http://playground.sun.com/pub/ipng/html/ipng-main.html
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Appendix A. BigInteger 
Java 1.1 introduced java.math.BigInteger , a class that represents arbitrary-precision integers. 
Many cryptographic algorithms depend on the use of large integers and modular arithmetic. 
BigInteger supplies all of this in a class that has been optimized for speed. In this appendix, I'll 
briefly describe my usage of BigInteger in implementing the ElGamal signature and encryption 
algorithms (see Chapter 9). 

ElGamal key generation requires three randomly generated numbers. The first, p, is the modulus. The 
bit length of p is the length of the key. Furthermore, p should be prime. Fortunately, BigInteger 
provides a constructor that does exactly what we want: 

public BigInteger(int bitLength, int certainty, Random rnd)  

bitLength is the desired length of the new BigInteger. The certainty parameter 
determines the probability of the number being prime. In particular, for a certainty n, the 
probability of a prime number is 1 - .5n. Finally, this constructor uses the given Random object 
to generate a number. The high-order bit will always be set, ensuring that the bit length of the 
new number matches the requested bit length. 

To begin creating a 2048-bit ElGamal key pair, we might do this: 

int keyLength = 2048; 
int certainty = 16; 
SecureRandom sr = new SecureRandom(); 
BigInteger p = new BigInteger(keyLength, certainty, sr); 

To continue creating an ElGamal key pair , we need two more random numbers, g and x. Both must be 
less than p. Another BigInteger constructor is appropriate for this task: 

public BigInteger(int numBits, Random rndSrc)  

This constructor simply creates a number with the given bit length, using the supplied 
Random. The high-order bit of the number will be set, ensuring that the new BigInteger has 
the correct bit length. 

So, the ElGamal key pair generation proceeds like this: 

BigInteger g = new BigInteger(keyLength - 1, sr); 
BigInteger x = new BigInteger(keyLength - 1, sr); 

To guarantee that g and x are less than p, I've used keyLength - 1 instead of keyLength. 

The last step is to calculate y = gx mod p. BigInteger has methods that implement most mathematical 
operations. The common ones are add(), subtract(), multiply(), and divide(). Many other useful 
operations are also encapsulated by methods. One method, modPow(), precisely suits our needs: 

BigInteger y = g.modPow(x, p); 

The modPow() call calculates gx mod p. That's all there is to it! The public key is p, g, and y; the private 
key is x. 

The math involved in encrypting and decrypting is similar, and it is greatly simplified by the use of 
BigInteger's methods. 

One pitfall that I encountered in implementing the ElGamal cipher has to do with converting a 
BigInteger to a byte array. Ciphers deal with byte arrays for input and output, but the ElGamal 
algorithm operates on large numbers (BigIntegers). Thus, the Cipher's input needs to be converted 
from a byte array to BigIntegers before it can be processed, and the results of the encryption or 
decryption operation must be converted back to byte arrays on the way out of the Cipher. 

Again, the BigInteger class saves our bacon. It has these useful constructors: 

public BigInteger(byte[] val); 
public BigInteger(int signum, byte[] magnitude); 



Java Cryptography 

 page 181

The first appears to be the one we want, except that it considers the byte array to be signed, a two's 
complement representation. In the ElGamal algorithm, we always expect to process positive numbers. 
Instead, we use the second constructor, which expects an unsigned byte array. The signum parameter 
determines the sign of the resulting BigInteger; it may be -1, 0, or 1. In ElGamalCipher, I always use 
the second constructor with signum equal to 1. For example, when encrypting, the message value m is 
constructed from an array of bytes, messageBytes, like this: 

BigInteger m = new BigInteger(1, messageBytes); 

Converting a BigInteger to a byte array is a bit more tricky. There is a useful method that appears 
exactly right. 

public byte[] toByteArray(); 

It doesn't do quite the right thing for us, though. It produces a two's complement byte array, whereas 
we want an unsigned byte array. All of our numbers are positive, which means the sign bit will always 
be 0, but it is the array length that gets messed up. Consider a 512-bit BigInteger. We expect an 
unsigned byte array representing this number to be 64 bytes long. toByteArray(), however, will 
return a 65-byte array. Why? It represents the number itself in 512 bits and uses an additional bit for 
sign. The resulting 513-bit quantity must be returned in 65 bytes. 

To work around this, ElGamalCipher and ElGamalSignature use the following helper method. The 
method simply performs toByteArray() if the bit length of the BigInteger is not a multiple of 8. In 
this case, the sign bit will not cause an extra byte to be added to the byte array. If the bit length is a 
multiple of 8, then the sign bit added by toByteArray() will cause an extra byte in the resulting byte 
array. In this case, getBytes() removes the extra byte and returns the result. 

  protected byte[] getBytes(BigInteger big) { 
    byte[] bigBytes = big.toByteArray(); 
    if ((big.bitLength() % 8) != 0) { 
      return bigBytes; 
    } 
 
    else { 
 
      byte[] smallerBytes = new byte[big.bitLength() / 8]; 
 
      System.arraycopy(bigBytes, 1, smallerBytes, 0, smallerBytes.length); 
 
      return smallerBytes; 
 
    } 
 
  } 
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Appendix B. Base64 
Base64 is a system for representing raw byte data as ASCII characters. You could use hexadecimal for 
the same purpose, but it's not as efficient. One hex digit (eight bits) corresponds to four bits of input. 
Data represented in hexadecimal will be double the size of the original. As its name implies, base64 
improves this ratio by representing six bits with each digit. Thus, 3 input bytes (3 x 8 = 24 bits) 
translates into 4 base64 digits (4 x 6 = 24 bits). Each base64 digit is represented by an ASCII 
character. Figure B.1 shows how bytes are converted to base64 digits. 

Figure B.1. Byte to base64 conversion 

 
Base64 encoding always extends the input data to a multiple of 24 bits (3 bytes) by padding with 
zeros. There are three distinct cases: 

• The input data is a multiple of 3 bytes. In this case, no padding is needed. 

• The input data has one extra byte. This byte is split into two base64 digits, and two special 
padding digits (the = symbol) are added to the end of the base64 representation. 

• The input data has two extra bytes. These bytes are represented by three base64 digits and 
one padding digit is added to the end of the base64 representation. 

The base64 system is fully described in RFC 1521, in section 5.2. You can download this document 
from ftp://ds.internic.net/rfc/rfc1521.txt. 

Sun provides base64 conversion classes in the unsupported sun.misc package. If you don't have these 
classes, you can use the base64 conversion classes presented here instead. 

The oreilly.jonathan.util.Base64 class contains static methods that convert from bytes to 
base64 and vice versa: 

package oreilly.jonathan.util; 
 
public class Base64 { 

The first method, encode() , converts a byte array to a String populated with base64 digits. It steps 
through the byte array, calling a helper method for each block of three input bytes: 

  public static String encode(byte[] raw) { 
    StringBuffer encoded = new StringBuffer(); 
    for (int i = 0; i < raw.length; i += 3) { 
      encoded.append(encodeBlock(raw, i)); 
    } 
    return encoded.toString(); 
  } 

The helper method, encodeBlock() , creates 4 base64 digits from three bytes of input data. We use an 
integer, block, (a 32-bit quantity) to hold the 24 bits of input data. block's value starts at 0, but we'll 
build it up from the input data. 

  protected static char[] encodeBlock(byte[] raw, int offset) { 
    int block = 0; 

The slack variable tells how much space is left in the input byte array: 

int slack = raw.length - offset - 1; 

ftp://ds.internic.net/rfc/rfc1521.txt
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It's possible that there are fewer than three bytes in this block, if we've reached the end of the input 
data. We calculate end to be the upper limit on how many input bytes we can read: 

int end = (slack >= 2) ? 2 : slack; 

With this in place, we simply loop through the input data, shift it appropriately, and add it to block. 
The bytes coming from the input array are signed quantities, so they have to be converted to unsigned 
quantities before being shifted into block. 

    for (int i = 0; i <= end; i++) { 
      byte b = raw[offset + i]; 
      int neuter = (b < 0) ? b + 256 : b; 
      block += neuter << (8 * (2 - i)); 
    } 

Once the block has been built, we just need to extract the base64 digits, which are six-bit quantities, 
from it. This is a matter of shifting the block correctly, and masking out all but the low six bits (& 
0x3f): 

    char[] base64 = new char[4]; 
    for (int i = 0; i < 4; i++) { 
      int sixbit = (block >>> (6 * (3 - i))) & 0x3f; 
      base64[i] = getChar(sixbit); 
    } 

Depending on how much space was left in the input array, the base64 padding character may need to 
be inserted into the character array: 

    if (slack < 1) 
      base64[2] = '='; 
    if (slack < 2) 
      base64[3] = '='; 

encodeBlock() always returns an array of four characters: 

    return base64; 
  } 

getChar() encapsulates the translation from a six-bit quantity to a base64 digit: 

  protected static char getChar(int sixBit) { 
    if (sixBit >= 0 && sixBit <= 25) 
      return (char)('A' + sixBit); 
    if (sixBit >= 26 && sixBit <= 51) 
      return (char)('a' + (sixBit - 26)); 
    if (sixBit >= 52 && sixBit <= 61) 
      return (char)('0' + (sixBit - 52)); 
    if (sixBit == 62) return '+'; 
    if (sixBit == 63) return '/'; 
    return '?'; 
  } 

Decoding a base64 string is the same process in reverse. The decode() method begins by figuring out 
how many padding digits are on the end of the base64 string: 

  public static byte[] decode(String base64) { 
    int pad = 0; 
    for (int i = base64.length() - 1; base64.charAt(i) == '='; i--) 
      pad++; 

It's now possible to calculate the length of the byte array, knowing the relevant bit lengths and 
compensating for padding: 

int length = base64.length() * 6 / 8 - pad; 

The byte array that holds the results, raw, is created with this length: 

byte[] raw = new byte[length]; 

Now we loop through the base64 value: 

    int rawIndex = 0; 
    for (int i = 0; i < base64.length(); i += 4) { 

This time, the block is built from the four base64 digits. A correctly formed base64 string always has 
some multiple of four characters. 

      int block = (getValue(base64.charAt(i)) << 18) 
          + (getValue(base64.charAt(i + 1)) << 12) 
          + (getValue(base64.charAt(i + 2)) << 6) 
          + (getValue(base64.charAt(i + 3))); 
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Based on the block, the byte array is filled with the appropriate eight-bit values: 

      for (int j = 0; j < 3 && rawIndex + j < raw.length; j++) 
        raw[rawIndex + j] = (byte)((block >> (8 * (2 - j))) & 0xff); 
      rawIndex += 3; 
    } 
    return raw; 
  } 

The getValue() method translates from base64 digits to their six-bit values: 

  protected static int getValue(char c) { 
    if (c >= 'A' && c <= 'Z') 
      return c - 'A'; 
    if (c >= 'a' && c <= 'z') 
      return c - 'a' + 26; 
    if (c >= '0' && c <= '9') 
      return c - '0' + 52; 
    if (c == '+') return 62; 
    if (c == '/') return 63; 
    if (c == '=') return 0; 
    return -1; 
  } 
} 

Two additional classes are doppelgängers for classes in the sun.misc package. You can use these 
classes with the examples in Chapter 1, if you don't have the sun.misc package available.  

package oreilly.jonathan.util; 
 
public class BASE64Encoder { 
  public String encode(byte[] raw) { 
    return Base64.encode(raw); 
  } 
} 
package oreilly.jonathan.util; 
 
public class BASE64Decoder { 
  public byte[] decodeBuffer(String base64) { 
    return Base64.decode(base64); 
  } 
} 
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Appendix C. JAR 
The jar command-line tool is used to create Java Archives, or JAR files. A JAR contains other files, 
which may be compressed using the popular ZIP format. The jar tool is used to create and modify 
JARs. 

JAR files will someday improve the speed of downloading applets over the network. You can stick all 
the files an applet needs into a JAR. This offers two speed advantages: 

• The client needs to download only one JAR, instead of the many individual files that make up 
the applet. Applets are typically composed of a number of small class, graphics, and audio 
files. The cost of setting up a separate network connection for each one is high. Downloading a 
single, larger file is faster. 

• Some of the files in the JAR may be compressed, which makes the download a little faster. Of 
course, it takes a little time to decompress the files, but bandwidth is clearly the time drain du 
jour. 

Currently, only the appletviewer tool and HotJava recognize JAR files containing applets. The major 
browser vendors are expected to follow suit soon. 

A JAR file can be signed, using javakey in JDK 1.1, or jarsigner in JDK 1.2. 

C.1 Creating 

Let's use jar to archive the files that make up the GraphLayout example applet that comes with the 
JDK 1.1. First, let's look at the files in that directory: 

C:\ dir 
 
 Volume in drive C is BUENDIA 
 Volume Serial Number is 1929-10EE 
 Directory of C:\jdk1.2beta2\demo\GraphLayout 
 
EDGE~1   CLA           316  09-18-96 12:16p Edge.class 
GRAPH~1  CLA         3,059  09-18-96 12:16p Graph.class 
GRAPH~1  JAV         9,503  12-06-96 10:14a Graph.java 
GRAPHP~2 CLA         5,986  09-18-96 12:16p GraphPanel.class 
NODE~1   CLA           375  09-18-96 12:16p Node.class 
EXAMPL~1 HTM           415  09-18-96 12:16p example1.html 
EXAMPL~2 HTM           241  09-18-96 12:16p example2.html 
EXAMPL~3 HTM           619  09-18-96 12:16p example3.html 
EXAMPL~4 HTM           283  09-18-96 12:16p example4.html 
AUDIO          <DIR>        04-16-97  8:28a audio 
         9 file(s)         20,797 bytes 
         3 dir(s)     222,429,184 bytes free 

All the applet needs to run are the .class files and the sound files contained in the audio directory. 

You can create a JAR using the -c option. By default, jar sends data to standard output. For most 
commands, though, you can use the -f option to specify a destination file. In this case, we want to 
specify the name of the destination JAR as well as the files to put into it, so we combine the -c and -f 
options: 

C:\ jar -cf GraphLayout.jar *.class audio 

This operation is completed in stony silence. If that makes you nervous, you can get some more 
feedback by adding the -v option (verbose). Like -f, the -v option can be combined with most of jar's 
other options: 

C:\ jar -cvf GraphLayout.jar *.class audio 
adding: Edge.class (in=316) (out=241) (deflated 23%) 
adding: Graph.class (in=3059) (out=1762) (deflated 42%) 
adding: GraphPanel.class (in=5986) (out=3492) (deflated 41%) 
adding: Node.class (in=375) (out=275) (deflated 26%) 
adding: audio/ (in=0) (out=0) (stored 0%) 
adding: audio/computer.au (in=21745) (out=20105) (deflated 7%) 
adding: audio/drip.au (in=759) (out=764) (deflated 0%) 
adding: audio/gong.au (in=42068) (out=37645) (deflated 10%) 

This shows each entry going into the JAR and how much it got compressed.  
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C.2 Extracting 

To examine your handiwork, you can use the -t option to list the contents of a JAR. Again, we use the 
-f option to specify the JAR name. As before, the -v option is also available. 

C:\ jar -tvf GraphLayout.jar 
   948 Tue Jun 03 15:29:48 EDT 1997 META-INF/MANIFEST.MF 
   316 Wed Sep 18 12:16:52 EDT 1996 Edge.class 
  3059 Wed Sep 18 12:16:52 EDT 1996 Graph.class 
  5986 Wed Sep 18 12:16:54 EDT 1996 GraphPanel.class 
   375 Wed Sep 18 12:16:54 EDT 1996 Node.class 
     0 Wed Apr 16 08:28:38 EDT 1997 audio/ 
 21745 Wed Sep 18 12:16:56 EDT 1996 audio/computer.au 
   759 Wed Sep 18 12:16:56 EDT 1996 audio/drip.au 
 42068 Wed Sep 18 12:16:56 EDT 1996 audio/gong.au 

But wait a minute! What is META-INF/MANIFEST.MF? It's the manifest file, a special file that 
contains information about the rest of the JAR. I'll talk about it soon. 

To extract files from a JAR, use the -x option. The -f and -v options are available, as before. You can 
extract all the files or just specify a few, as we do here: 

C:\ jar -xvf GraphLayout.jar Edge.class audio 
 extracted: Edge.class 
   created: audio\ 
 extracted: audio\computer.au 
 extracted: audio\drip.au 
 extracted: audio\gong.au 

Conveniently, jar automatically recreates directory structure. 

On the Win32 platform, you may have to reverse some of the slashes. For example, to extract just the 
computer.au file in the audio subdirectory, you would do this: 

C:\ jar -xvf GraphLayout.jar audio\computer.au 
 extracted: audio\computer.au 

Even though a contents listing (using -t) shows this file as audio/computer.au (forward slash), we 
have to extract it as audio\ computer.au (backward slash).  

C.3 The Manifest 

The manifest file contains information about the contents of a JAR. It is a human-readable file, 
consisting of name and value pairs. These are grouped into sections, with each section separated by a 
blank line. With the exception of the first section, every section corresponds to a file in the JAR. The 
first section consists of one value, indicating the manifest version used in the rest of the file. Currently, 
this is 1.0, so the first line of the manifest file looks like this: 

Manifest-Version: 1.0 

The section corresponding to the computer.au file looks like this: 

Name: audio/computer.au 
Digest-Algorithms: SHA MD5 
SHA-Digest: zJMcY3mfFhSUPj8kdfZxKKJAXUM= 
MD5-Digest: 5OWrlZ4NgfWzsXuuiwxrHg== 

As you can see, the manifest file includes message digests of every file in the JAR. Two different 
algorithms are used to calculate a message digest, and the value of the digest for each algorithm is 
listed. Every file has a section like this, with the sections separated by blank lines. 

You can specify additional information about an entry. You can specify, for example, that a .class file 
is a Java Bean by adding this entry to its section: 

Java-Bean: True 

So how do we add information to the manifest file? When the JAR is created, you can specify 
additional information that should be included in the manifest. For example, if we wanted to mark 
Edge.class as a Java Bean, we would create a file with the following information: 

Name: Edge.class 
Java-Bean: True 
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Save this file as add.mf. Then, we can use jar's -m option to use this file for manifest information, as 
follows: 

C:\ jar -cfm GraphLayout.jar add.mf *.class audio 

In the resulting manifest file, the information we specified is merged with the automatically generated 
information. The section of the manifest file that corresponds to Edge.class now looks like this: 

Name: Edge.class 
Java-Bean: True 
Digest-Algorithms: SHA MD5 
SHA-Digest: sFKF74y7jL0DJQ3wuuxVgONMmEc= 
 
MD5-Digest: xRwh6TRKszKWp8qMEdiPzw== 

C.4 Signing 

When you sign a JAR using javakey or jarsigner , additional information is placed in the JAR. This 
happens behind the scenes, but it may be helpful to know exactly what's going on. 

Signature information is placed into files in the META-INF directory of the JAR, the same directory 
that contains the manifest file. Each person who signs the file is represented by a signature file, with 
an extension of .SF. The signature file looks a lot like the manifest file. It has a version section 
(Signature-Version: 1.0) and sections for each file in the JAR. 

The name of this file is determined from the directive file used when the signature is created. When we 
used javakey to sign a JAR, earlier in this chapter, the directive file contained this line: 

signature.file=MARISIGN 

This would generate the signature file in the JAR as META-INF/MARISIGN.SF. Basically, this file just 
contains message digests for the contents of the JAR. A signed version of this signature file represents 
the actual JAR signature. The signed version has the same filename but a different extension, 
determined by the signing algorithm used. Marian used the DSA algorithm to sign the JAR, so the 
signed file is META-INF/MARISIGN.DSA. 

We can verify this by examining the contents of the JAR: 

C:\ jar -tvf signedArchive.jar META-INF 
   288 Fri May 30 09:09:00 EDT 1997 META-INF/MANIFEST.MF 
 
   289 Wed Jun 04 15:10:54 EDT 1997 META-INF\MARISIGN.SF 
 
  1289 Wed Jun 04 15:10:54 EDT 1997 META-INF\MARISIGN.DSA 
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Appendix D. Javakey 
In JDK 1.1, the javakey command-line tool maintains a database of identities and their associated 
keys and certificates. It's quite a versatile tool. 

D.1 Creating 

The -c option tells javakey to create something. You can create either a normal identity or a signer. 
An identity is a person or organization with an associated public key and, perhaps, certificates to verify 
the public key. A signer is an identity with a private key that can be used for signing files. You should 
have an identity in your javakey database corresponding to every person that you expect may provide 
you with signed code. The first step is to create the identity; later on, I'll show you how to associate a 
public key and certificates with the identity. 

When an identity is created, you can tell javakey if the identity should be trusted or not. The 
appletviewer tool recognizes trusted identities. If you use appletviewer to run an applet that is 
signed by a trusted identity, then the applet will not be constrained by the usual security restrictions. 
Although it's a step in the right direction, this is an all-or-nothing policy. You might trust Will Scarlet, 
but only a little, so it would be nice to specify that applets signed by him be allowed only filesystem 
access in one directory and not allowed network access at all. JavaSoft promises that more finely 
tuned access control will be available in future releases. Unless you specify otherwise, identities are 
not trusted when you first create them with javakey. 

For example, the following commands will create Will Scarlet, who is not trusted, Marian, who is a 
trusted signer, and Sheriff, who is not trusted. The -c option creates an identity, while -cs tells 
javakey to create a signer. 

C:\ javakey -c WillScarlet false 
Created identity WillScarlet[identitydb.obj][not trusted] 
 
C:\ javakey -cs Marian true 
Created identity [Signer]Marian[identitydb.obj][trusted] 
 
 
C:\ javakey -c Sheriff 
Created identity Sheriff[identitydb.obj][not trusted] 
 
 

 

Be careful! When you use javakey to set up a trusted identity, you allow 
applets signed by that identity to run with no security restrictions; that is, 
outside the sandbox. There's good reason for the sandbox to exist; think 
long and hard before you let a signer's applets get out. 

 
 

If you change your mind about an identity's trustworthiness, you can update the database using the -t 
option. 

C:\ javakey -t WillScarlet true 
WillScarlet is trusted: true 

Identities and signers are created without keys and certificates. You'll find out how to add these later.  

D.2 Inspecting 

You can see the identities in your database by using the -l option: 

C:\ javakey -l 
 
Scope:sun.security.IdentityDatabase, source file: c:\jdk1.1.1\identitydb.obj 
 
WillScarlet[identitydb.obj][trusted] 
 
 [Signer]Marian[identitydb.obj][trusted] 
 
Sheriff[identitydb.obj][not trusted] 
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The -li option displays detailed information for a particular identity: 

C:\ javakey -li Marian 
Identity: Marian 
[Signer]Marian[identitydb.obj][trusted] 
        no keys 
        no certificates 
        No further information available. 

The -ld option displays detailed information for every identity in the database. 

D.3 Gimme the Keys... 

We can either generate keys for an identity or import them from a file. Generally speaking, you'll 
generate key pairs for the signers you "own" and import public keys for everyone else. Marian, for 
example, will generate her own public and private keys. She, however, will import public keys for both 
Will Scarlet and Sheriff. 

Let's begin by generating a public and private key pair for Marian. We'll use the -gk option, which can 
be abbreviated to -g. To generate the keys, we need to specify which public key cipher algorithm we 
wish to use. JDK 1.1 ships with support for the DSA algorithm, so that's what we'll use. 

Finally, javakey needs to know how long to make the keys. This is the size, in bits, of the keys. Longer 
keys are more secure, but they take more time to create and use. You need to generate keys only once, 
though, so you might as well bite the bullet and generate longer keys. You probably won't notice the 
extra time it takes to use a longer key. The DSA algorithm can generate keys of 512, 768, or 1024 bits. 

C:\ javakey -gk Marian DSA 1024 
Generated DSA keys for Marian (strength: 1024). 

This is a lengthy process: You should probably kick this off and take a break while it chugs along. 

When you generate the keys this way, they are stored in javakey's internal database. If you want to 
store the keys by themselves in external files, you can specify the filenames at the end of the javakey 
command, like this: 

C:\ javakey -gk Marian DSA 1024 public.x509 private.x509 
Generated DSA keys for Marian (strength: 1024). 
Saved public key to public.x509. 
Saved private key to private.x509. 

The keys are stored in X.509 DER format. (See the sidebar for more information on X.509.) 

Importing keys is just as easy. Let's suppose that Marian has a copy of Will Scarlet's public key in a file 
called WillScarlet.x509. She can associate the key with Will Scarlet in the database by using the -ik 
(import key) option: 

C:\ javakey -ik WillScarlet WillScarlet.x509 
Set public key from WillScarlet.x509 for WillScarlet. 

Importing keys from files is not very secure. It's more likely that instead of a file representing Will's 
public key, Marian would have a certificate that contained the value of the key. In the previous 
example, for instance, let's consider the problem of how Marian obtains the WillScarlet.x509 file. She 
might download it from an FTP or HTTP server, but this would allow an attacker to replace the 
contents of the file with a rogue key. The attacker could then masquerade as Will Scarlet and do 
considerable damage before Marian discovers she's been duped. Will Scarlet could write the 
WillScarlet.x509 file on a disk and hand it to Marian personally, but this kind of delivery is often 
prohibitively expensive or downright infeasible.  

D.4 Certificates 

A certificate is a statement signed by one entity that associates another entity with a public key. Let's 
say, for example, that Robin Hood wants to find out Will Scarlet's public key so that he can accept 
messages signed by Will. Marian has obtained Will's key securely; it now resides in her javakey 
database. She can't just export the key and send a file to Robin Hood, though; the Sheriff might 
intervene and give Robin Hood a bogus key. So Marian creates a certificate, using information about 
herself, information about Will, and his public key. Marian is the issuer of this certificate, and Will is 
the subject. 
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Because the information that goes into a certificate can be lengthy, javakey uses a directive file in 
addition to command-line options for generating certificates. The directive file contains information 
about Marian, who is issuing the certificate, and Will, who is the subject of the certificate. 

Certificates come in chains. Let's consider the certificate we just talked about. It certifies that Will 
Scarlet's public key has a certain value, and it is signed by Marian's private key. To verify the 
certificate, we need to know Marian's public key. How do we verify Marian's public key? We'd have a 
certificate stating the value of Marian's public key, signed by someone else. We verify that certificate 
using another certificate, and so on. How does this end? Eventually, we come to a self-signed 
certificate, issued by a Certificate Authority (CA) . This is a special certificate whose issuer and subject 
are the same person or organization. Obviously, this is not very secure; anyone with javakey could 
forge such a certificate. Current thinking suggests that the certificates for CAs will be "widely 
published," making forgery difficult. It's a goofy system, in some ways, but it's a de facto standard. 

In this example, Marian will serve as the CA. We'll start by creating the head of the certificate chain, a 
self-signed certificate for Marian. Let's construct the directive file, line by line. We begin by specifying 
the identity who is issuing the certificate: 

issuer.name=Marian 

This is followed by information about the subject of the certificate. In this case, the subject is also 
Marian: 

subject.name=Marian 
subject.real.name=Maid Marian 
subject.org.unit=Overprotected Daughters 
subject.org=Royal Castle 
subject.country=England 

The certificate has a lifetime, beyond which it is no longer trustworthy. It also has a serial number, 
which should be unique among certificates from the same issuer. 

start.date=28 May 1997 
end.date=31 December 1997 
serial.number=1001 

We also specify the algorithm to be used for signing the certificate: 

signature.algorithm=DSA 

Finally, we can specify a file that will contain the certificate. The certificate is stored in javakey's 
database as well. This parameter is optional. 

out.file=Marian.certificate 

Save this in a file called Marian.directive. Then generate the certificate as follows, using the -gc 
option: 

C:\ javakey -gc Marian.directive 
Generated certificate from directive file Marian.directive. 
 
C:\ javakey -li Marian 
Identity: Marian 
[Signer]Marian[identitydb.obj][trusted] 
        public and private keys initialized 
        certificates: 
        certificate 1   for  : CN=Maid Marian, OU=Overprotected Daughters, 
                               O=Royal Castle, C=England 
                        from : CN=Maid Marian, OU=Overprotected Daughters, 
                               O=Royal Castle, C=England 
 
        No further information available. 

As you can see, javakey has generated our certificate and added it as certificate 1 to Marian's 
identity. There will also be a file version of the certificate in Marian.certificate. This file is not human-
readable, but it can be transmitted to other people to add to their identity databases. You can get 
javakey to interpret the file for you by using the -dc (display certificate) option. (In the following 
code, the p, g, and y lines have been truncated.) 
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C:\ javakey -dc Marian.certificate 
[ 
  X.509v1 certificate, 
  Subject is CN=Maid Marian, OU=Overprotected Daughters, 
             O=Royal Castle, C=Eng 
  Key:  Sun DSA Public Key 
parameters: 
p: fd7f53811d75122952df4a9c2eece4e7f611b7523cef4400c31e3f80b6512669455d40225 
q: 9760508f15230bccb292b982a2eb840bf0581cf5 
g: f7e1a085d69b3ddecbbcab5c36b857b97994afbbfa3aea82f9574c0b3d0782675159578eb 
 
y: 865437d06f000f2eda235a5cacc34905d51276b9e015bee6f525d601465f52e7b7e3cc52e 
  Validity <Tue May 27 19:00:00 EDT 1997> until 
           <Tue Dec 30 19:00:00 EST 1997> 
  Issuer is CN=Maid Marian, OU=Overprotected Daughters, 
            O=Royal Castle, C=Engl 
 
  Issuer signature used [SHA1withDSA] 
 
  Serial number =     03e9 
 
] 

Most of the parameters we specified in the directive file are shown. Also shown are the p, q, and g 
parameters that the DSA algorithm uses internally. 

Note that a self-signed certificate is not trustworthy. Anybody, including the Sheriff of Nottingham, 
could use javakey to create a self-signed certificate purporting to belong to Marian. When you accept 
a self-signed certificate, you should be very, very sure that you have the real thing. 

Marian, for instance, places this certificate on a floppy disk, which she drops from her tower window 
to Robin Hood, who happens to be passing by on his horse. Thus, Robin Hood is pretty sure that he 
has a genuine self-signed certificate of Marian's public key. 

A more practical way to be sure you have a genuine copy of a self-signed certificate is to compare the 
certificate's fingerprint with a well-known reference. A certificate fingerprint is a cryptographic 
message digest of the certificate, represented in hexadecimal. If Robin Hood downloads Marian's 
certificate from the Internet, it might be a fake. To verify it, he calls Marian on the telephone and 
reads her the fingerprint of the certificate he downloaded. If it matches the fingerprint on Marian's 
original certificate, Robin Hood knows he has a good copy. Commercial CAs, like VeriSign, should 
publish their self-signed (root) certificate fingerprints widely, possibly in newspapers or magazines, 
for example. The root certificates of CAs are currently distributed as part of browsers. When you 
download Netscape Navigator or Internet Explorer, they come complete with the root certificates of a 
dozen or so CAs. 

Now that Marian has a self-signed certificate, she can issue a certificate for Will Scarlet. This new 
certificate will refer to the self-signed certificate as proof of Marian's identity. The directive file looks 
like this: 

issuer.name=Marian 
 
subject.name=WillScarlet 
subject.real.name=Will Scarlet 
subject.org.unit=Archery 
subject.org=Merry Men 
subject.country=England 
 
issuer.cert=1 
 
start.date=28 May 1997 
end.date=31 December 1997 
serial.number=1002 
 
signature.algorithm=DSA 
 
 
out.file=WillScarlet.certificate 
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Would the Real X.509 Please Stand Up? 
X.509 is the de facto standard for certificates. X.509 is actually the name of a document 
published by the International Telecommunications Union (ITU), formerly known as the 
CCITT. The document itself is concerned with problems of authentication. The certificate 
definition is just one part of the document. 

The certificate definition is specified in terms of the Abstract Syntax Notation language, 
known as ASN.1. This language is frequently used to specify data structures used in network 
communications. It specifies data structures, like struct in C. A set of encoding rules is 
needed to convert a struct-full of data to a series of bits. Two of the most common 
encoding rules used with ASN.1 are the Basic Encoding Rules (BER) and Distinguished 
Encoding Rules (DER). 

 

The file looks a lot like the last one, except that the subject is Will, not Marian. Also, one additional 
line has mysteriously appeared. 

issuer.cert=1 

This line means that the information in Marian's first certificate, the self-signed one we just created, 
will be used to sign the certificate for Will Scarlet. We know it's numbered 1 from examining Marian's 
information using javakey -li Marian. 

D.5 To and Fro 

Most of the remaining javakey options deal with exchanging keys and certificates to and from files. 
These are summarized, along with the rest of javakey's options, in Table D.1. Parameters in square 
brackets are optional. 

Table D.1, Javakey Options 

Option syntax Description 

-c identity [trust] 
This option creates an identity with the given name. The trust parameter should be either 

"true" or "false." If it is not present, false is the default. 

-cs signer [trust] This option is the same as -c, except it creates a signer instead of an identity. 

-t name trust 
You can use this option to change the trust status of the named identity or signer. The 

trust parameter should be "true" or "false." 

-ii name You can enter additional information about an identity or signer using this option. 

-r name Use this option to remove an identity or signer from the database. 

-gk signer algorithm 
keysize [pubfile 

[privfile]] 

This option, which can be abbreviated -g, generates a key pair for the named signer. It 
generates a key pair for the given algorithm name and strength. The pubfile and privfile 
parameters, if specified, are used as filenames to contain the newly generated public and 

private keys. 

-l Use this option to see the contents of the javakey database. 

-ld This option is the same as -l but shows more detail. 

-li name This option displays details about the named identity or signer. 
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Option syntax Description 

-gc directivefile Use this option to generate a certificate, using the information in the given directive file. 

-dc certfile This option displays the certificate contained in the given file. 

-gs directivefile 
jarfile 

This option signs the given JAR using the information from the given directive file. 

-ik identity pubfile 
Use this option to import a public key from pubfile to be associated with the given 

identity. 

-ikp signer pubfile 
privfile 

Use this option to import a public and private key pair for the given signer. 

-ic identity certfile This option associates the given identity and certificate. 

-ek identity pubfile 
[privfile] 

This option exports the given identity's public key to the named file. If privfile is 
specified and the identity is a signer, the private key can also be exported. 

-ec identity certnum 
certfile 

Use this option to export the certificate numbered certnum of the given identity to the 
file certfile. 

Let's extend the certificate example. If Robin Hood gets a copy of the certificate that Marian issued for 
Will Scarlet, he can associate it with Will's identity in his javakey database as follows: 

C:\ javakey -ic WillScarlet WillScarlet.certificate 
Imported certificate from WillScarlet.certificate for WillScarlet. 

Now Robin Hood has a certified copy of Will Scarlet's public key and can verify Will's signature. 

A final "import" option, -ii , allows you to enter textual information about an identity. The 
information you type shows up when you look at the detailed identity listing using the -li or -ld 
options. 

C:\ javakey -ii WillScarlet 
Please enter the info for this identity. 
[End with ctrl-D on Unix and ctrl-Z on Win32] 
This is some extraneous, 
multi-line babbling about Will Scarlet. 
^Z 
Set information for WillScarlet 

D.6 Sign of the Times 

JDK 1.0 had an inflexible policy with regard to applets. An applet lived in the "sandbox" and was 
therefore prevented from doing anything really useful, like writing to the hard disk or making 
arbitrary socket connections. In JDK 1.1, it's possible to create signed applets. This means that a client 
who has the signer's certificate and trusts it can allow signed applets to run without the usual security 
restrictions. Two conditions must be met for this to happen: 

• The client needs to have installed the signer's certificate using javakey. 

• The client software that hosts the applet needs to be JDK 1.1 compliant; it must be savvy about 
JAR files, and it must understand the new security features. As of this writing, only HotJava 
and appletviewer know anything about signed applets. Netscape and Microsoft will follow 
suit shortly. 

You can use javakey to sign Java Archive (JAR) files. A JAR can contain many files. For example, you 
could bundle up all of the files needed for a particular applet, classes, graphics, and sound, into a JAR. 
When you sign an applet JAR, javakey adds a signature and one of the signer's certificates to the 
JAR. See Appendix C, for a description of the jar utility, which creates JAR files. 
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As with certificate generation, applet signing requires a directive file. First, we need to specify who is 
signing the file: 

signer=Marian 

Next, we tell javakey which of the signer's certificates we want to include in the JAR. You also need to 
specify the chain depth, represented by a chain entry. This feature is not used yet, so you can just set 
it to 0. In future versions it will probably specify how many certificates in a chain you would like to 
include as part of the JAR. 

cert=1 
chain=0 

Then we specify a filename for the signature. This should be eight characters or fewer: 

signature.file=MARISIGN 

An optional parameter is the name of the signed JAR. If we don't specify this, then .sig is appended to 
the original JAR to create the signed JAR name. 

out.file=signedArchive.jar 

Save this information in sign.directive. We're finally ready to sign the JAR, using the -gs (generate 
signature) option and specifying both the directive file and the JAR name: 

C:\ javakey -gs sign.directive Quickie.jar 
Adding entry: META-INF/MANIFEST.MF 
Creating entry: META-INF\MARISIGN.SF 
Creating entry: META-INF\MARISIGN.DSA 
Adding entry: Quickie.class 
Signed JAR file Quickie.jar using directive file sign.directive. 

In Appendix C, we talked about the files that get created when you sign a JAR.  

D.7 The Care and Feeding of Keys 

Private keys must be kept secret. This is the whole premise of public key cryptography. Unfortunately, 
a private key is not something people can memorize. It needs to be stored electronically, whether on 
fixed media (a hard disk), removable media (a floppy disk), or a hardware device (a smart card). 
Smart cards are not widely available, so you will most likely store your private key in a disk file of 
some sort. 

Using javakey, there are two possible private key vulnerabilities. If you write your private keys to disk 
files, those files must be protected. Additionally, private keys are stored in the javakey database file. 
This file, by default, is identitydb.obj and lives in the JDK installation directory. If you wish to change 
the location of this file, you can specify the identity.database property in the 
lib/security/java.security file found beneath the JDK installation directory. Note that the 
java.security file should also be protected, particularly on a multiuser system. 

You can feel safe if these conditions are met: 

• You are the only person who uses your computer. 

• Your computer is in a physically secure location. 

• Your computer is not connected to a network. 

This is not a realistic scenario. The last point is the least likely to happen; it's hard to find a computer 
that isn't on a LAN or connected to the Internet in one way or another. You are actually pretty safe if 
you are not running any server software. Even if you're not, though, there is always the possibility of 
operating system bugs that might allow intruders some access to your system. The precautions you 
take with your private keys should be commensurate with your paranoia. Your paranoia should be 
commensurate with the amount you can lose if your private key is compromised. 

People with multiuser systems need to be especially careful. The safest thing to do is to limit access to 
javakey, java.security, and identitydb.obj to the system administrator only. This restriction does not 
allow users to sign files, however, unless they have their own installation of the JDK and an individual 
identitydb.obj. JavaSoft™ has some recommendations, at http://www.javasoft.com/security/ 
policy.html. The functions in javakey do not divide neatly into administrator and user functions.  

http://www.javasoft.com/security/
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Appendix E. Quick Reference 
This appendix contains a summary listing of the cryptography classes I have covered in this book. The 
classes are organized by package. The following packages are covered: 

• java.security (partial) 

• java.security.cert 

• java.security.interfaces 

• java.security.spec 

• javax.crypto 

• javax.crypto.interfaces 

• javax.crypto.spec 

 

E.1 Package java.security 

 

Class java.security.AlgorithmParameters   

 

  

Description 

This class represents a set of parameters for a specific algorithm. Subclasses of this class can be used 
with the algorithm-specific initialization methods of KeyPairGenerator and Cipher. 

Class Definition 
public class java.security.AlgorithmParameters { 
 
  // Class Methods 
  public static final AlgorithmParameters getInstance(String); 
  public static final AlgorithmParameters getInstance(String, String); 
 
  // Instance Methods 
  protected AlgorithmParameters(AlgorithmParametersSpi, Provider, 
  String); 
  public final String getAlgorithm(); 
  public final Provider getProvider(); 
  public final void init(AlgorithmParameterSpec); 
  public final void init(byte[]); 
  public final void init(byte[], String); 
  public final AlgorithmParameterSpec getParameterSpec(Class); 
  public final byte[] getEncoded(); 
  public final byte[] getEncoded(String); 
  public final String toString(); 
} 

See Also 

KeyPairGenerator  
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Class java.security.AlgorithmParametersSpi   

 

  

Description 

This is the Security Provider Interface for algorithm parameters. If you want to implement your own 
algorithm parameters, you do so by subclassing this class and registering your implementation with 
an appropriate security provider. 

Class Definition 
public abstract class java.security.AlgorithmParametersSpi 
    extends java.lang.Object { 
 
  // Constructors 
  public AlgorithmParametersSpi(); 
 
  // Protected Instance Methods 
  protected abstract byte[] engineGetEncoded(); 
  protected abstract byte[] engineGetEncoded(String); 
  protected abstract AlgorithmParameterSpec 
  engineGetParameterSpec(Class); 
  protected abstract void engineInit(AlgorithmParameterSpec); 
  protected abstract void engineInit(byte[]); 
  protected abstract void engineInit(byte[], String); 
  protected abstract String engineToString(); 
} 

See Also 

AlgorithmParameters  
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Class java.security.DigestInputStream   

 

  

Description 

A digest input stream is an input filter stream that is associated with a message digest object. As data 
is read from the input stream, it is automatically passed to its associated message digest object; once 
all the data has been read, the message digest object will return the hash of the input data. You must 
have an existing input stream and an initialized message digest object to construct this class; once the 
data has passed through the stream, call the methods of the message digest object explicitly to obtain 
the hash. 

Class Definition 
public class java.security.DigestInputStream 
  extends java.io.FilterInputStream { 
 
  // Variables 
  protected MessageDigest digest; 
 
  // Constructors 
  public DigestInputStream(InputStream, MessageDigest); 
 
  // Instance Methods 
  public MessageDigest getMessageDigest(); 
  public void on(boolean); 
  public int read(); 
  public int read(byte[], int, int); 
  public void setMessageDigest(MessageDigest); 
  public String toString(); 
} 

See Also 

DigestOutputStream, MessageDigest 
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Class java.security.DigestOutputStream   

 

  

Description 

A digest output stream is a filter output stream that is associated with a message digest object. When 
data is written to the output stream, it is also passed to the message digest object so that when the 
data has all been written to the output stream, the hash of that data may be obtained from the digest 
object. You must have an existing output stream and an initialized message digest object to use this 
class. 

Class Definition 
public classs java.security.DigestOutputStream 
  extends java.io.FilterOutputStream { 
 
  // Variables 
  protected MessageDigest digest; 
 
  // Constructors 
  public DigestOutputStream(OutputStream, MessageDigest); 
 
  // Instance Methods 
  public MessageDigest getMessageDigest(); 
  public void on(boolean); 
  public void setMessageDigest(MessageDigest); 
  public String toString(); 
  public void write(int); 
  public void write(byte[], int, int); 
} 

See Also 

DigestInputStream , MessageDigest  
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Class java.security.Identity   

 

  

Description 

An identity encapsulates public knowledge about an entity (that is, a person or a corporation, or 
anything that could hold a public key). Identities have names and may hold a public key, along with a 
certificate chain to validate the public key. An identity may belong to an identity scope, but this 
feature is optional and is not typically used. 

Class Definition 
public class java.security.Identity 
  extends java.lang.Object 
  implements java.security.Principal, java.io.Serializable { 
 
  // Constructors 
  protected Identity(); 
  public Identity(String); 
  public Identity(String, String, Certificate[], PublicKey); 
  public Identity(String, IdentityScope); 
 
  // Instance Methods 
  public void addCertificate(Certificate); 
  public final boolean equals(Object); 
  public Certificate[] getCertificates(); 
  public String getInfo(); 
  public final String getName(); 
  public PublicKey getPublicKey(); 
  public final IdentityScope getScope(); 
  public int hashCode(); 
  public void removeCertificate(Certificate); 
  public void setInfo(String); 
  public void setPublicKey(PublicKey); 
  public String toString(); 
  public String toString(boolean); 
 
  // Protected Instance Methods 
  protected boolean identityEquals(Identity); 
} 

See Also 

Certificate, IdentityScope, Principal, PublicKey  
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Class java.security.IdentityScope   

 

  

Description 

An identity scope is a collection of identities; an identity may belong to a single identity scope. The 
notion is that scope is recursive: An identity scope may itself belong to another identity scope (or it 
may be unscoped). This class is not often used in Java 1.2. 

Class Definition 
public abstract class java.security.IdentityScope 
  extends java.security.Identity { 
 
  // Constructors 
  protected IdentityScope(); 
  public IdentityScope(String); 
  public IdentityScope(String, IdentityScope); 
 
  // Class Methods 
  public static IdentityScope getSystemScope(); 
  protected static void setSystemScope(IdentityScope); 
 
  // Instance Methods 
  public abstract void addIdentity(Identity); 
  public abstract Identity getIdentity(String); 
  public Identity getIdentity(Principal); 
  public abstract Identity getIdentity(PublicKey); 
  public abstract Enumeration identities(); 
  public abstract void removeIdentity(Identity); 
  public abstract int size(); 
  public String toString(); 
} 

See AlsoIdentityScope class 

Identity  
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Interface java.security.Key   

 

  

Description 

A key is essentially a series of bytes that are used by a cryptographic algorithm. Depending on the type 
of the key, the key may be used only for particular operations and only for particular algorithms, and it 
may have certain mathematical properties (including a mathematical relationship to other keys). The 
series of bytes that make up a key is the encoded format of the key. 

Interface Definition 
public abstract interface java.security.Key 
  implements java.io.Serializable { 
 
  // Instance Methods 
  public abstract String getAlgorithm(); 
  public abstract byte[] getEncoded(); 
  public abstract String getFormat(); 
} 

See Also 

PrivateKey, PublicKey, SecretKey 



Java Cryptography 

 page 202

 

Class java.security.KeyFactory   

 

  

Description 

A key factory is an engine class that is capable of translating between public or private key objects and 
their external format (and vice versa). Hence, key factories may be used to import or export keys, as 
well as to translate keys of one class (e.g., com.acme.DSAPublicKey) to another class (e.g., 
com.xyz.DSAPublicKeyImpl) as long as those classes share the same base class. Key factories operate 
in terms of key specifications; these specifications are the various external formats in which a key may 
transmitted. Keys are imported via the generatePublic() and generatePrivate() methods; they 
are exported via the getKeySpec() method, and they are translated via the translateKey() method. 

Class Definition 
public class java.security.KeyFactory 
  extends java.lang.Object { 
 
  // Constructors 
  protected KeyFactory(KeyFactorySpi, Provider, String); 
 
  // Class Methods 
  public static final KeyFactory getInstance(String); 
  public static final KeyFactory getInstance(String, String); 
 
  // Instance Methods 
  public final PrivateKey generatePrivate(KeySpec); 
  public final PublicKey generatePublic(KeySpec); 
  public final String getAlgorithm(); 
  public final KeySpec getKeySpec(Key, Class); 
  public final Provider getProvider(); 
  public final Key translateKey(Key); 
} 

See Also 

AlgorithmParameterSpec, KeyFactorySpi, KeySpec  
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Class java.security.KeyFactorySpi   

 

  

Description 

This is the Service Provider Interface for a key factory; if you want to implement your own key factory, 
you do so by extending this class and registering your implementation with an appropriate security 
provider. Instances of this class are expected to know how to create key objects from external key 
specifications and vice versa. 

Class Definition 
public abstract class java.security.KeyFactorySpi 
  extends java.lang.Object { 
 
  // Constructors 
  public KeyFactorySpi(); 
 
  // Protected Instance Methods 
  protected abstract PrivateKey engineGeneratePrivate(KeySpec); 
  protected abstract PublicKey engineGeneratePublic(KeySpec); 
  protected abstract KeySpec engineGetKeySpec(Key, Class); 
  protected abstract Key engineTranslateKey(Key); 
} 

See Also 

KeyFactory, KeySpec  

 

 

Class java.security.KeyPair   

 

  

Description 

Public and private keys are mathematically related to each other and hence are generated together; 
this class provides an encapsulation of both the keys as a convenience to key generation. 

Class Definition 
public final class java.security.KeyPair 
  extends java.lang.Object { 
 
  // Constructors 
  public KeyPair(PublicKey, PrivateKey); 
 
  // Instance Methods 
  public PrivateKey getPrivate(); 
  public PublicKey getPublic(); 
} 

See Also 

KeyPairGenerator, PrivateKey, PublicKey 
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Class java.security.KeyPairGenerator   

 

  

Description 

This is an engine class that is capable of generating a public key and its related private key. Instances 
of this class will generate key pairs that are appropriate for a particular algorithm (DSA, RSA, etc.). A 
key pair generator may be initialized to return keys of a particular strength (which is usually the 
number of bits in the key), or it may be initialized in an algorithmic-specific way; the former case is 
implemented by most key generators. An instance of this class may be used to generate any number of 
key pairs. 

Class Definition 
public abstract class java.security.KeyPairGenerator 
  extends java.security.KeyPairGeneratorSpi { 
 
  // Constructors 
  protected KeyPairGenerator(String); 
 
  // Class Methods 
  public static KeyPairGenerator getInstance(String); 
  public static KeyPairGenerator getInstance(String, String); 
 
  // Instance Methods 
  public final KeyPair genKeyPair(); 
  public String getAlgorithm(); 
  public final Provider getProvider(); 
  public void initialize(int); 
  public void initialize(AlgorithmParameterSpec); 
} 

See Also 

AlgorithmParameterSpec, KeyPair  
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Class java.security.KeyPairGeneratorSpi   

 

  

Description 

This is the Service Provider Interface class for the key pair generation engine; if you want to 
implement your own key pair generator, you must extend this class and register your implementation 
with an appropriate security provider. Instances of this class must be prepared to generate key pairs of 
a particular strength (or length); they may optionally accept an algorithmic-specific set of 
initialization values. 

Class Definition 
public abstract class java.security.KeyPairGeneratorSpi 
  extends java.lang.Object { 
 
  // Constructors 
  public KeyPairGeneratorSpi(); 
 
  // Instance Methods 
  public abstract KeyPair generateKeyPair(); 
  public abstract void initialize(int, SecureRandom); 
  public void initialize(AlgorithmParameterSpec, SecureRandom); 
} 

See Also 

AlgorithmParameterSpec, KeyPairGenerator, SecureRandom  
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Class java.security.KeyStore   

 

  

Description 

This class is responsible for maintaining a set of keys and their related owners. In the default 
implementation, this class maintains the .keystore file held in the user's home directory, but you may 
provide an alternate implementation of this class that holds keys anywhere: in a database, or on a 
remote filesystem, or on a Java smart card, or any and all of the above. The class that is used to 
provide the default keystore implementation is specified by the keystore property in the 
$JDKHOME/lib/java.security file. The keystore may optionally require a passphrase for access to the 
entire keystore (via the load() method); this passphrase is often used only for sanity checking and is 
often not specified at all. On the other hand, private keys in the keystore should be protected (e.g., 
encrypted) by using a different passphrase for each private key. 

Note that although the keystore associates entities with keys, it does not rely on the Identity class 
itself. 

Class Definition 
public abstract class java.security.KeyStore 
  extends java.lang.Object { 
 
  // Constructors 
  public KeyStore(); 
 
  // Class Methods 
  public static final KeyStore getInstance(); 
 
  // Instance Methods 
  public abstract Enumeration aliases(); 
  public abstract boolean containsAlias(String); 
  public abstract void deleteEntry(String); 
  public abstract Certificate getCertificate(String); 
  public abstract String getCertificateAlias(Certificate); 
  public abstract Certificate[] getCertificateChain(String); 
  public abstract Date getCreationDate(String); 
  public abstract PrivateKey getPrivateKey(String, String); 
  public abstract boolean isCertificateEntry(String); 
  public abstract boolean isKeyEntry(String); 
  public abstract void load(InputStream, String); 
  public abstract void setCertificateEntry(String, Certificate); 
  public abstract void setKeyEntry(String, PrivateKey, String, 
                 Certificate[]); 
  public abstract void setKeyEntry(String, byte[], Certificate[]); 
  public abstract int size(); 
  public abstract void store(OutputStream, String); 
} 

See Also 

Certificate, PublicKey  
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Class java.security.MessageDigest   

 

  

Description 

The message digest class is an engine class that can produce a one-way hash value for any arbitrary 
input. Message digests have two properties: They produce a unique hash for each set of input data 
(subject to the number of bits that are output), and the original input data is indiscernible from the 
hash output. The hash value is variously called a digital fingerprint or a digest. Message digests are 
components of digital signatures, but they are useful in their own right to verify that a set of data has 
not been corrupted. Once a digest object is created, data may be fed to it via the update() methods; 
the hash itself is returned via the digest() method. 

Class Definition 
public abstract class java.security.MessageDigest 
  extends java.security.MessageDigestSpi { 
 
  // Constructors 
  protected MessageDigest(String); 
 
  // Class Methods 
  public static MessageDigest getInstance(String); 
  public static MessageDigest getInstance(String, String); 
  public static boolean isEqual(byte[], byte[]); 
 
  // Instance Methods 
  public Object clone(); 
  public byte[] digest(); 
  public byte[] digest(byte[]); 
  public int digest(byte[], int, int); 
  public final String getAlgorithm(); 
  public final int getDigestLength(); 
  public final Provider getProvider(); 
  public void reset(); 
  public String toString(); 
  public void update(byte); 
  public void update(byte[]); 
 
  public void update(byte[], int, int); 
 
} 



Java Cryptography 

 page 208

 

Class java.security.MessageDigestSpi   

 

  

Description 

This is the Service Provider Interface for the message digest engine; if you want to implement your 
own message digest class, you do so by extending this class and registering your implementation with 
an appropriate security provider. Because the MessageDigest class itself extends this class, you may 
also extend the MessageDigest class directly. Implementations of this class are expected to 
accumulate a hash value over data that is fed to it as a series of arbitrary bytes. 

Class Definition 
public abstract class java.security.MessageDigestSpi 
  extends java.lang.Object { 
 
  // Constructors 
  public MessageDigestSpi(); 
 
  // Instance Methods 
  public Object clone(); 
 
  // Protected Instance Methods 
  protected abstract byte[] engineDigest(); 
  protected int engineDigest(byte[], int, int); 
  protected int engineGetDigestLength(); 
  protected abstract void engineReset(); 
  protected abstract void engineUpdate(byte); 
  protected abstract void engineUpdate(byte[], int, int); 
} 

See Also 

MessageDigest 

 

 

Interface java.security.Principal   

 

  

Description 

A principal is anything that has a name, such as an identity. The name in this case is often an X.500 
distinguished name, but that is not a requirement. 

Interface Definition 
public abstract interface java.security.Principal { 
 
  // Instance Methods 
  public abstract boolean equals(Object); 
  public abstract String getName(); 
  public abstract int hashCode(); 
  public abstract String toString(); 
} 

See Also 

Identity 
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Interface java.security.PrivateKey   

 

  

Description 

A private key is a key with certain mathematical properties that allow it to perform inverse 
cryptographic operations with its matching public key. Classes implement this interface only for type 
identification. 

Interface Definition 
public abstract interface java.security.PrivateKey 
  implements java.security.Key { 
} 

See Also 

Key, PublicKey 

 

 

Class java.security.Provider   

 

  

Description 

An instance of the Provider class is responsible for mapping particular implementations to desired 
algorithm/engine pairs; instances of this class are consulted (indirectly) by the getInstance() 
methods of the engine classes to find a class that implements the desired operation. Instances of this 
class must be registered either with the Security class or by listing them in the 
$JDKHOME/lib/security/java.security file as a security.provider property. 

Class Definition 
public abstract class java.security.Provider 
  extends java.util.Properties { 
 
  // Constructors 
  protected Provider(String, double, String); 
 
  // Instance Methods 
  public synchronized void clear(); 
  public String getInfo(); 
  public String getName(); 
  public double getVersion(); 
  public synchronized Object put(Object, Object); 
  public synchronized Object remove(Object); 
  public String toString(); 
} 

See Also 

Security  
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Interface java.security.PublicKey   

 

  

Description 

A public key is a key with certain mathematical properties that allow it to perform inverse 
cryptographic operations with its matching private key. Classes implement this interface only for type 
identification. 

Interface Definition 
public abstract interface java.security.PublicKey 
  implements java.security.Key { 
} 

See Also 

Key, PrivateKey 

 

 

Class java.security.SecureRandom   

 

  

Description 

This class generates random numbers. Unlike the standard random-number generator, numbers 
generated by this class are cryptographically secure, that is, they are less subject to pattern guessing 
and other attacks that can be made on a traditional random-number generator. 

Class Definition 
public class java.security.SecureRandom 
  extends java.util.Random { 
 
  // Constructors 
  public SecureRandom(); 
  public SecureRandom(byte[]); 
 
  // Class Methods 
  public static byte[] getSeed(int); 
 
  // Instance Methods 
  public synchronized void nextBytes(byte[]); 
  public void setSeed(long); 
  public synchronized void setSeed(byte[]); 
 
  // Protected Instance Methods 
  protected final int next(int); 
} 
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Class java.security.Security   

 

  

Description 

This class manages the list of providers that have been installed into the virtual machine; this list of 
providers is consulted to find an appropriate class to provide the implementation of a particular 
operation when the getInstance() method of an engine class is called. The list of providers initially 
comes from the $JDKHOME/lib/security/java.security file, and applications may use methods of this 
class to add and remove providers from that list. 

Class Definition 
public final class java.security.Security 
  extends java.lang.Object { 
 
  // Class Methods 
  public static int addProvider(Provider); 
  public static String getAlgorithmProperty(String, String); 
  public static String getProperty(String); 
  public static Provider getProvider(String); 
  public static Provider[] getProviders(); 
  public static int insertProviderAt(Provider, int); 
  public static void removeProvider(String); 
  public static void setProperty(String, String); 
} 

See Also 

Provider  
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Class java.security.Signature   

 

  

Description 

This engine class provides the ability to create or verify digital signatures by employing different 
algorithms that have been registered with the Security class. As with all engine classes, instances of 
this class are obtained via the getInstance() method. The signature object must be initialized with 
the appropriate private key (to sign) or public key (to verify), then data must be fed to the object via 
the update() methods, and then the signature can be obtained (via the sign() method) or verified 
(via the verify() method). Signature objects may support algorithm-specific parameters, though this 
is not a common implementation. 

Class Definition 
public abstract class java.security.Signature 
  extends java.security.SignatureSpi { 
 
  // Constants 
  protected static final int SIGN; 
  protected static final int UNINITIALIZED; 
  protected static final int VERIFY; 
 
  // Variables 
  protected int state; 
 
  // Constructors 
  protected Signature(String); 
 
  // Class Methods 
  public static Signature getInstance(String); 
  public static Signature getInstance(String, String); 
 
  // Instance Methods 
  public Object clone(); 
  public final String getAlgorithm(); 
  public final Object getParameter(String); 
  public final Provider getProvider(); 
  public final void initSign(PrivateKey); 
  public final void initSign(PrivateKey, SecureRandom); 
  public final void initVerify(PublicKey); 
  public final void setParameter(String, Object); 
  public final void setParameter(AlgorithmParameterSpec); 
  public final byte[] sign(); 
  public String toString(); 
  public final void update(byte); 
  public final void update(byte[]); 
  public final void update(byte[], int, int); 
  public final boolean verify(byte[]); 
} 

See Also 

Provider  
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Class java.security.SignatureSpi   

 

  

Description 

This is the Security Provider Interface for the signature engine. If you want to implement your own 
signature engine, you must extend this class and register your implementation with an appropriate 
security provider. Because the Signature class already extends this class, your implementation may 
extend the Signature class directly. Implementations of this class must be prepared both to sign and 
to verify data that is passed to the engineUpdate() method. Initialization of the engine may 
optionally support a set of algorithm-specific parameters. 

Class Definition 
public abstract class java.security.SignatureSpi 
  extends java.lang.Object { 
 
  // Variables 
  protected SecureRandom appRandom; 
 
  // Constructors 
  public SignatureSpi(); 
 
  // Instance Methods 
  public Object clone(); 
 
  // Protected Instance Methods 
  protected abstract Object engineGetParameter(String); 
  protected abstract void engineInitSign(PrivateKey); 
  protected void engineInitSign(PrivateKey, SecureRandom); 
  protected abstract void engineInitVerify(PublicKey); 
  protected abstract void engineSetParameter(String, Object); 
  protected void engineSetParameter(AlgorithmParameterSpec); 
  protected abstract byte[] engineSign(); 
  protected abstract void engineUpdate(byte); 
  protected abstract void engineUpdate(byte[], int, int); 
  protected abstract boolean engineVerify(byte[]); 
} 

See Also 

Provider, Signature  
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Class java.security.SignedObject   

 

  

Description 

A signed object is a container class for another (target) object; the signed object contains a serialized 
version of the target along with a digital signature of the data contained in the target object. You must 
provide a serializable object and a private key to create a signed object, after which you can remove the 
embedded object and verify the signature of the signed object by providing the appropriate public key. 

Class Definition 
public final class java.security.SignedObject 
  extends java.lang.Object 
  implements java.io.Serializable { 
 
  // Constructors 
  public SignedObject(Serializable, PrivateKey, Signature); 
 
  // Instance Methods 
  public String getAlgorithm(); 
  public Object getObject(); 
  public byte[] getSignature(); 
  public boolean verify(PublicKey, Signature); 
} 

See Also 

Signature 

 

 

Class java.security.Signer   

 

  

Description 

A signer abstracts the notion of a principal (that is, an individual or a corporation) that has a private 
key and a corresponding public key. Signers may optionally belong to an identity scope, but that 
usage is now rare. 

Class Definition 
public abstract class java.security.Signer 
  extends java.security.Identity { 
 
  // Constructors 
  protected Signer(); 
  public Signer(String); 
  public Signer(String, IdentityScope); 
 
  // Instance Methods 
  public PrivateKey getPrivateKey(); 
  public final void setKeyPair(KeyPair); 
  public String toString(); 
} 

See Also 

Identity, Principal  
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E.2 Package java.security.cert 

 

Class java.security.cert.Certificate   

 

  

Description 

The Certificate class represents any type of cryptographic certificate. A certificate contains a public 
key (see getPublicKey()) and other associated information. The certificate contains an internal 
signature that protects its integrity. You can verify the integrity of the certificate by calling one of the 
verify() methods with the public key of the certificate's issuer. (Note: don't confuse this class with 
the java.security.Certificate interface, which is deprecated.) 

Class Definition 
public abstract class java.security.cert.Certificate 
  extends java.lang.Object { 
 
  // Constructors 
  public Certificate(); 
 
  // Instance Methods 
  public boolean equals(Object); 
  public abstract byte[] getEncoded(); 
  public abstract PublicKey getPublicKey(); 
  public int hashCode(); 
  public abstract String toString(); 
  public abstract void verify(PublicKey); 
  public abstract void verify(PublicKey, String); 
} 

See Also 

PublicKey, X509Certificate  
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Class java.security.cert.RevokedCertificate   

 

  

Description 

A RevokedCertificate represents a certificate whose contained key is no longer safe to use. 
Instances of this class are returned by X509CRL's getRevokedCertificate() method. You can 
examine the certificate's revocation date and X.509 extensions. 

Class Definition 
public abstract class java.security.cert.RevokedCertificate 
  extends java.lang.Object 
  implements java.security.cert.X509Extension { 
 
  // Constructors 
  public RevokedCertificate(); 
 
  // Instance Methods 
  public abstract Set getCriticalExtensionOIDs(); 
  public abstract byte[] getExtensionValue(String); 
  public abstract Set getNonCriticalExtensionOIDs(); 
  public abstract Date getRevocationDate(); 
  public abstract BigInteger getSerialNumber(); 
  public abstract boolean hasExtensions(); 
  public abstract String toString(); 
} 

See Also 

Certificate, X509CRL, X509Extension 
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Class java.security.cert.X509Certificate   

 

  

Description 

This subclass of Certificate represents certificates as defined in the X.509 standard. Such 
certificates associate a public key with a subject, which is usually a person or organization. You can 
find out the certificate's subject by calling getSubjectDN(). You can retrieve the subject's public key 
using getPublicKey(), which is inherited from Certificate. The certificate's issuer is the person or 
organization that generated and signed the certificate (see getIssuerDN()). 

If you have a certificate file in the format described by RFC 1421, you can create an X509Certificate 
from it using one of the getInstance() methods. 

Class Definition 
public abstract class java.security.cert.X509Certificate 
  extends java.security.cert.Certificate 
  implements java.security.cert.X509Extension { 
 
  // Constructors 
  public X509Certificate(); 
 
  // Class Methods 
  public static final X509Certificate getInstance(InputStream); 
  public static final X509Certificate getInstance(byte[]); 
 
  // Instance Methods 
  public abstract void checkValidity(); 
  public abstract void checkValidity(Date); 
  public abstract int getBasicConstraints(); 
  public abstract Set getCriticalExtensionOIDs(); 
  public abstract byte[] getExtensionValue(String); 
  public abstract Principal getIssuerDN(); 
  public abstract boolean[] getIssuerUniqueID(); 
  public abstract boolean[] getKeyUsage(); 
  public abstract Set getNonCriticalExtensionOIDs(); 
  public abstract Date getNotAfter(); 
  public abstract Date getNotBefore(); 
  public abstract BigInteger getSerialNumber(); 
  public abstract String getSigAlgName(); 
  public abstract String getSigAlgOID(); 
  public abstract byte[] getSigAlgParams(); 
  public abstract byte[] getSignature(); 
  public abstract Principal getSubjectDN(); 
  public abstract boolean[] getSubjectUniqueID(); 
  public abstract byte[] getTBSCertificate(); 
  public abstract int getVersion(); 
} 

See Also 

Principal, PublicKey, X509Extension  
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Class java.security.cert.X509CRL   

 

  

Description 

A Certificate Revocation List (CRL) is a list of certificates whose keys are no longer valid. This class 
represents CRLs as defined in the X.509 standard. If you have a CRL file you would like to examine, 
you can construct an X509CRL object from the file using one of the getInstance() factory methods. A 
CRL, just like a certificate, has an internal signature that protects its integrity. To verify the integrity of 
the CRL itself, call one of the verify() methods with the issuer's public key. To find out if a particular 
certificate is revoked, call isRevoked() with the certificate's serial number. 

Class Definition 
public abstract class java.security.cert.X509CRL 
  extends java.lang.Object 
  implements java.security.cert.X509Extension { 
 
  // Constructors 
  public X509CRL(); 
 
  // Class Methods 
  public static final X509CRL getInstance(InputStream); 
  public static final X509CRL getInstance(byte[]); 
 
  // Instance Methods 
  public boolean equals(Object); 
  public abstract Set getCriticalExtensionOIDs(); 
  public abstract byte[] getEncoded(); 
  public abstract byte[] getExtensionValue(String); 
  public abstract Principal getIssuerDN(); 
  public abstract Date getNextUpdate(); 
  public abstract Set getNonCriticalExtensionOIDs(); 
  public abstract RevokedCertificate getRevokedCertificate(BigInteger); 
  public abstract Set getRevokedCertificates(); 
  public abstract String getSigAlgName(); 
  public abstract String getSigAlgOID(); 
  public abstract byte[] getSigAlgParams(); 
  public abstract byte[] getSignature(); 
  public abstract byte[] getTBSCertList(); 
  public abstract Date getThisUpdate(); 
  public abstract int getVersion(); 
  public int hashCode(); 
  public abstract boolean isRevoked(BigInteger); 
  public abstract String toString(); 
  public abstract void verify(PublicKey); 
  public abstract void verify(PublicKey, String); 
} 

See Also 

Certificate, PublicKey, RevokedCertificate, X509Extension  
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Interface java.security.cert.X509Extension   

 

  

Description 

The X509Extension interface represents the certificate extensions defined by the X.509v3 standard. 
Extensions are additional bits of information contained in a certificate. Each extension is designated 
as critical or noncritical. An application that handles a certificate should either correctly interpret the 
critical extensions or produce some kind of error if they cannot be recognized. 

Interface Definition 
public abstract interface java.security.cert.X509Extension { 
 
  // Instance Methods 
  public abstract Set getCriticalExtensionOIDs(); 
  public abstract byte[] getExtensionValue(String); 
  public abstract Set getNonCriticalExtensionOIDs(); 
} 

See Also 

RevokedCertificate, X509Certificate, X509CRL  
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E.3 Package java.security.interfaces 

 

Interface java.security.interfaces.DSAKey   

 

  

Description 

This interface represents public and private keys that are suitable for use in DSA signature algorithms. 
This interface allows you to retrieve DSA-specific information from a suitable DSA key. 

Interface Definition 
public interface java.security.interfaces.DSAKey { 
   
  // Instance Methods 
  public DSAParams getParams(); 
} 

See Also 

PrivateKey, PublicKey  

 

 

Interface java.security.interfaces.DSAKeyPairGenerator   

 

  

Description 

This interface represents key generators that can be used to generate pairs of DSA keys. Key pair 
generators that implement this interface can be initialized with information specific to DSA key 
generation. 

Interface Definition 
public interface java.security.interfaces.DSAKeyPairGenerator { 
 
  // Instance Methods 
  public void initialize(DSAParams, SecureRandom); 
  public void initialize(int, boolean, SecureRandom); 
} 

See Also 

KeyPairGenerator 
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Interface java.security.interfaces.DSAParams   

 

  

Description 

Classes that implement this interface allow you to obtain the three variables that are common to both 
DSA public and private keys. 

Interface Definition 
public interface java.security.interfaces.DSAParams { 
 
  // Instance Methods 
  public BigInteger getP(); 
public BigInteger getQ(); 
  public BigInteger getG(); 
} 

See Also 

DSAPrivateKey, DSAPublicKey  

 

 

Interface java.security.interfaces.DSAPrivateKey   

 

  

Description 

Classes that implement this interface allow you to retrieve the private key parameter used to calculate 
a DSA private key. 

Interface Definition 
public interface java.security.interfaces.DSAPrivateKey { 
 
  // Instance Methods 
  public BigInteger getX(); 
} 

See Also 

DSAParams, DSAPublicKey 
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Interface java.security.interfaces.DSAPublicKey   

 

  

Description 

Classes that implement this interface allow you to retrieve the public key parameter used to calculate a 
DSA public key. 

Interface Definition 
public interface java.security.interfaces.DSAPublicKey { 
 
  // Instance Methods 
  public BigInteger getY(); 
} 

See Also 

DSAParams, DSAPrivateKey  
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E.4 Package java.security.spec 

 

Interface java.security.spec.AlgorithmParameterSpec   

 

  

Description 

Algorithm parameter specifications are used to import and export keys via a key factory. This interface 
is used strictly for type identification; the specifics of the parameters are left to the implementing 
class. 

Interface Definition 
public interface java.security.spec.AlgorithmParameterSpec { 
} 

See Also 

DSAParameterSpec, KeyFactory 

 

 

Class java.security.spec.DSAParameterSpec   

 

  

Description 

This class provides the basis for DSA key generation via parameters; it encapsulates the three 
parameters that are common to DSA algorithms. 

Class Definition 
public class java.security.spec.DSAParameterSpec 
  extends java.lang.Object 
  implements java.security.spec.AlgorithmParameterSpec, 
       java.security.interfaces.DSAParams { 
 
  // Constructors 
  public DSAParameterSpec(BigInteger, BigInteger, BigInteger); 
 
  // Instance Methods 
  public BigInteger getG(); 
  public BigInteger getP(); 
  public BigInteger getQ(); 
} 

See Also 

AlgorithmParameterSpec, DSAParams, DSAPrivateKeySpec, DSAPublicKey-Spec 
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Class java.security.spec.DSAPrivateKeySpec   

 

  

Description 

This class provides the ability to calculate a DSA private key based on the four parameters that 
constitute the key. 

Class Definition 
public class java.security.spec.DSAPrivateKeySpec 
  extends java.lang.Object 
  implements java.security.spec.KeySpec { 
 
  // Constructors 
  public DSAPrivateKeySpec(BigInteger, BigInteger, 
                BigInteger, BigInteger); 
 
  // Instance Methods 
  public BigInteger getG(); 
  public BigInteger getP(); 
  public BigInteger getQ(); 
  public BigInteger getX(); 
} 

See Also 

DSAPublicKeySpec, KeyFactory 

 

 

Class java.security.spec.DSAPublicKeySpec   

 

  

Description 

This class provides the ability to calculate a DSA public key based on the four parameters that 
constitute the key. 

Class Definition 
public class java.security.spec.DSAPublicKeySpec 
  extends java.lang.Object 
  implements java.security.spec.KeySpec { 
 
  // Constructors 
  public DSAPublicKeySpec(BigInteger, BigInteger, 
                BigInteger, BigInteger); 
 
  // Instance Methods 
  public BigInteger getG(); 
  public BigInteger getP(); 
  public BigInteger getQ(); 
  public BigInteger getY(); 
} 

See Also 

DSAPrivateKeySpec, KeyFactory  
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Class java.security.spec.EncodedKeySpec   

 

  

Description 

This class is used to translate between keys and their external encoded format. The encoded format is 
always simply a series of bytes, but the format of the encoding of the key information into those bytes 
may vary depending on the algorithm used to generate the key. 

Class Definition 
public abstract class java.security.spec.EncodedKeySpec 
  extends java.lang.Object 
  implements java.security.spec.KeySpec { 
 
  // Constructors 
  public EncodedKeySpec(); 
 
  // Instance Methods 
  public abstract byte[] getEncoded(); 
  public abstract String getFormat(); 
} 

See Also 

KeyFactory, KeySpec, PKCS8EncodedKeySpec, X509EncodedKeySpec 

 

 

Interface java.security.spec.KeySpec   

 

  

Description 

A key specification is used to import and export keys via a key factory. This may be done either based 
on the algorithm parameters used to generate the key or via an encoded series of bytes that represent 
the key. Classes that deal with the latter case implement this interface, which is used strictly for type 
identification. 

Interface Definition 
public abstract interface java.security.spec.KeySpec { 
} 

See Also 

AlgorithmParameterSpec, EncodedKeySpec, KeyFactory  
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Class java.security.spec.PKCS8EncodedKeySpec   

 

  

Description 

This class represents the PKCS#8 encoding of a private key; the key is encoded in DER format. This is 
the class that is typically used when dealing with DSA private keys in a key factory. 

Class Definition 
public class java.security.spec.PKCS8EncodedKeySpec 
  extends java.security.spec.EncodedKeySpec { 
 
  // Constructors 
  public PKCS8EncodedKeySpec(byte[]); 
 
  // Instance Methods 
  public byte[] getEncoded(); 
  public final String getFormat(); 
} 

See Also 

EncodedKeySpec, X509EncodedKeySpec 

 

 

Class java.security.spec.X509EncodedKeySpec   

 

  

Description 

This class represents the X509 encoding of a public key. It may also be used for private keys although 
the PKCS#8 encoding is typically used for those keys. 

Class Definition 
public class java.security.spec.X509EncodedKeySpec 
  extends java.security.spec.EncodedKeySpec { 
 
 
  // Constructors 
  public X509EncodedKeySpec(byte[]); 
 
  // Instance Methods 
  public byte[] getEncoded(); 
  public final String getFormat(); 
} 

See Also 

EncodedKeySpec, PKCS8EncodedKeySpec  
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E.5 Package javax.crypto 

 

Class javax.crypto.Cipher   

 

  

Description 

This class represents a cryptographic cipher, either symmetric or asymmetric. To get a cipher for a 
particular algorithm, call one of the getInstance() methods. You should specify an algorithm name, 
a cipher mode, and a padding scheme. The cipher should be initialized for encryption or decryption 
using the init() method and an appropriate key. To actually perform the encryption or decryption, 
use update() and doFinal(). The following example shows how to encrypt plaintext using a DES 
cipher in ECB mode with PKCS#5 padding: 

public byte[] simpleEncrypt(byte[] plaintext, Key key) throws Exception  
{ 
  Cipher cipher = Cipher.getInstance("DES/ECB/PKCS5Padding"); 
  cipher.init(Cipher.ENCRYPT_MODE, key); 
  byte[] ciphertext = cipher.doFinal(stringBytes); 
  return ciphertext; 
} 

Class Definition 
public class javax.crypto.Cipher 
  extends java.lang.Object { 
 
  // Constants 
  public static final int DECRYPT_MODE; 
  public static final int ENCRYPT_MODE; 
 
  // Constructors 
  protected Cipher(CipherSpi, Provider, String); 
 
  // Class Methods 
  public static final Cipher getInstance(String); 
  public static final Cipher getInstance(String, String); 
 
  // Instance Methods 
  public final byte[] doFinal(); 
  public final byte[] doFinal(byte[]); 
  public final int doFinal(byte[], int); 
  public final byte[] doFinal(byte[], int, int); 
public final int doFinal(byte[], int, int, byte[]); 
  public final int doFinal(byte[], int, int, byte[], int); 
  public final int getBlockSize(); 
  public final byte[] getIV(); 
  public final int getOutputSize(int); 
  public final Provider getProvider(); 
  public final void init(int, Key); 
  public final void init(int, Key, SecureRandom); 
  public final void init(int, Key, AlgorithmParameterSpec); 
  public final void init(int, Key, AlgorithmParameterSpec, 
  SecureRandom); 
  public final byte[] update(byte[]); 
  public final byte[] update(byte[], int, int); 
  public final int update(byte[], int, int, byte[]); 
  public final int update(byte[], int, int, byte[], int); 
} 

See Also 

AlgorithmParameterSpec, CipherSpi, Key, Provider, SecureRandom  
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Class javax.crypto.CipherInputStream   

 

  

Description 

A CipherInputStream is a subclass of java.io.FilterInputStream that passes its data through a 
Cipher. You can construct a CipherInputStream by specifying an underlying stream and supplying 
an initialized Cipher. 

Class Definition 
public class javax.crypto.CipherInputStream 
  extends java.io.FilterInputStream { 
 
  // Constructors 
  protected CipherInputStream(InputStream); 
  public CipherInputStream(InputStream, Cipher); 
 
  // Instance Methods 
  public int available(); 
  public void close(); 
  public boolean markSupported(); 
  public int read(); 
  public int read(byte[]); 
  public int read(byte[], int, int); 
  public long skip(long); 
} 

See Also 

Cipher  
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Class javax.crypto.CipherOutputStream   

 

  

Description 

This class is a subclass of java.io.FilterOutputStream that passes all its data through a Cipher. 
You can construct a CipherOutputStream by specifying an underlying stream and an initialized 
Cipher. 

Class Definition 
public class javax.crypto.CipherOutputStream 
  extends java.io.FilterOutputStream { 
 
  // Constructors 
  protected CipherOutputStream(OutputStream); 
  public CipherOutputStream(OutputStream, Cipher); 
 
  // Instance Methods 
  public void close(); 
  public void flush(); 
  public void write(int); 
  public void write(byte[]); 
  public void write(byte[], int, int); 
} 

See Also 

Cipher 
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Class javax.crypto.CipherSpi   

 

  

Description 

The CipherSpi class is the parent class of all cipher implementations. To implement a particular 
cipher algorithm, create a subclass of CipherSpi and define all its methods. Most of the methods 
correspond to methods in Cipher's API; for example, a call to Cipher's getBlockSize() method 
results in a call to the implementation's engineGetBlockSize(). 

Class Definition 
public abstract class javax.crypto.CipherSpi 
  extends java.lang.Object { 
 
  // Constructors 
  public CipherSpi(); 
 
  // Protected Instance Methods 
  protected abstract byte[] engineDoFinal(byte[], int, int); 
  protected abstract int engineDoFinal(byte[], int, int, byte[], int); 
  protected abstract int engineGetBlockSize(); 
  protected abstract byte[] engineGetIV(); 
  protected abstract int engineGetOutputSize(int); 
  protected abstract void engineInit(int, Key, SecureRandom); 
  protected abstract void engineInit(int, Key, AlgorithmParameterSpec, 
    SecureRandom); 
  protected abstract void engineSetMode(String); 
  protected abstract void engineSetPadding(String); 
  protected abstract byte[] engineUpdate(byte[], int, int); 
  protected abstract int engineUpdate(byte[], int, int, byte[], int); 
} 

See Also 

AlgorithmParameterSpec, Cipher, Key, SecureRandom  
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Class javax.crypto.KeyAgreement   

 

  

Description 

This class represents a key agreement protocol, which is an arrangement by which two parties can 
agree on a secret value. You can obtain an instance of this class by calling getInstance(). Once the 
KeyAgreement is initialized (see init()), you can step through the phases of the key agreement 
protocol using doPhase(). Once the phases are complete, the secret value is returned from 
generateSecret(). 

Class Definition 
public class javax.crypto.KeyAgreement 
  extends java.lang.Object { 
 
  // Constructors 
  protected KeyAgreement(KeyAgreementSpi, Provider, String); 
 
  // Class Methods 
  public static final KeyAgreement getInstance(String); 
  public static final KeyAgreement getInstance(String, String); 
 
  // Instance Methods 
  public final Key doPhase(Key, boolean); 
  public final byte[] generateSecret(); 
  public final int generateSecret(byte[], int); 
  public final SecretKey generateSecret(String); 
  public final String getAlgorithm(); 
  public final Provider getProvider(); 
  public final void init(Key); 
  public final void init(Key, SecureRandom); 
  public final void init(Key, AlgorithmParameterSpec); 
  public final void init(Key, AlgorithmParameterSpec, SecureRandom); 
} 

See Also 

AlgorithmParameterSpec, Key, KeyAgreementSpi, Provider, SecureRandom  
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Class javax.crypto.KeyAgreementSpi   

 

  

Description 

KeyAgreementSpi is the superclass of all key agreement protocol implementations. If you want to 
implement a key agreement algorithm, create a subclass of KeyAgreementSpi and define all of its 
methods. 

Class Definition 
public abstract class javax.crypto.KeyAgreementSpi 
  extends java.lang.Object { 
 
  // Constructors 
  public KeyAgreementSpi(); 
 
  // Protected Instance Methods 
  protected abstract Key engineDoPhase(Key, boolean); 
  protected abstract byte[] engineGenerateSecret(); 
  protected abstract int engineGenerateSecret(byte[], int); 
  protected abstract SecretKey engineGenerateSecret(String); 
  protected abstract void engineInit(Key, SecureRandom); 
  protected abstract void engineInit(Key, AlgorithmParameterSpec, 
  SecureRandom); 
} 

See Also 

AlgorithmParameterSpec, Key, KeyAgreement, SecureRandom  
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Class javax.crypto.KeyGenerator   

 

  

Description 

A KeyGenerator creates random keys for use with symmetric ciphers. To obtain a KeyGenerator, call 
getInstance() with an algorithm name. Then initialize the KeyGenerator by calling one of the 
init() methods. To create a new random key, call generateKey(). The following example shows how 
to create a random key for a DES cipher: 

KeyGenerator kg = KeyGenerator.getInstance("DES"); 
kg.init(new SecureRandom()); 
SecretKey key = kg.generateKey(); 

Class Definition 
public class javax.crypto.KeyGenerator 
  extends java.lang.Object { 
 
  // Constructors 
  protected KeyGenerator(KeyGeneratorSpi, Provider, String); 
 
  // Class Methods 
  public static final KeyGenerator getInstance(String); 
  public static final KeyGenerator getInstance(String, String); 
 
  // Instance Methods 
  public final SecretKey generateKey(); 
  public final String getAlgorithm(); 
  public final Provider getProvider(); 
  public final void init(int); 
  public final void init(int, SecureRandom); 
  public final void init(SecureRandom); 
  public final void init(AlgorithmParameterSpec); 
  public final void init(AlgorithmParameterSpec, SecureRandom); 
} 

See Also 

AlgorithmParameterSpec, KeyGeneratorSpi, Provider, SecretKey, Secure-Random 
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Class javax.crypto.KeyGeneratorSpi   

 

  

Description 

KeyGenerator implementations descend from KeyGeneratorSpi. To create an implementation of a 
key generation algorithm, make a subclass of KeyGeneratorSpi and define each of its methods. 

Class Definition 
public abstract class javax.crypto.KeyGeneratorSpi 
  extends java.lang.Object { 
 
  // Constructors 
  public KeyGeneratorSpi(); 
 
  // Protected Instance Methods 
  protected abstract SecretKey engineGenerateKey(); 
  protected abstract void engineInit(int, SecureRandom); 
  protected abstract void engineInit(SecureRandom); 
  protected abstract void engineInit(AlgorithmParameterSpec, 
 SecureRandom); 
} 

See Also 

AlgorithmParameterSpec, KeyGenerator, SecretKey, SecureRandom 

 

 

Class javax.crypto.NullCipher   

 

  

Description 

As its name implies, NullCipher is a Cipher that does nothing. You can use it to test cryptographic 
programs. Because NullCipher performs no transformations, its ciphertext will be exactly the same 
as its plaintext. 

Class Definition 
public class javax.crypto.NullCipher 
  extends javax.crypto.Cipher { 
 
  // Constructors 
  public NullCipher(); 
} 

See Also 

Cipher  
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Class javax.crypto.SealedObject   

 

  

Description 

A SealedObject is a container for another object. The contained object is encrypted using a Cipher. 
You can construct a SealedObject using any Serializable object and a Cipher that is initialized for 
encryption. To decrypt the contained object, call getObject() with a Cipher that is initialized for 
decryption. 

Class Definition 
public class javax.crypto.SealedObject 
  extends java.lang.Object 
  implements java.io.Serializable { 
 
  // Constructors 
  public SealedObject(Serializable, Cipher); 
 
  // Instance Methods 
  public final Object getObject(Cipher); 
} 

See Also 

PublicKey, PrivateKey 

 

 

Interface javax.crypto.SecretKey   

 

  

Description 

SecretKey is a semantic extension to the java.security.Key interface. It represents a key that is 
used with a symmetric cipher. 

Interface Definition 
public abstract interface javax.crypto.SecretKey 
  implements java.security.Key { 
} 

See Also 

Key 
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Class javax.crypto.SecretKeyFactory   

 

  

Description 

A SecretKeyFactory is used to convert between secret key data formats. For example, you might use 
a SecretKeyFactory to convert a DES SecretKey into an array of bytes, or to some other 
representation (a KeySpec). Similarly, a SecretKeyFactory can translate from a KeySpec to a 
SecretKey. As usual, you can obtain a SecretKeyFactory for a particular algorithm by calling 
getInstance(). You can translate from a SecretKey to a KeySpec using translateKey(). If you 
want to create a SecretKey from a corresponding KeySpec, use generateSecret(). 

Class Definition 
public class javax.crypto.SecretKeyFactory 
  extends java.lang.Object { 
 
  // Constructors 
  protected SecretKeyFactory(SecretKeyFactorySpi, Provider, String); 
  // Class Methods 
  public static final SecretKeyFactory getInstance(String); 
  public static final SecretKeyFactory getInstance(String, String); 
  // Instance Methods 
  public final SecretKey generateSecret(KeySpec); 
  public final String getAlgorithm(); 
  public final KeySpec getKeySpec(SecretKey, Class); 
  public final Provider getProvider(); 
  public final SecretKey translateKey(SecretKey); 
} 

See Also 

KeySpec, Provider, SecretKey, SecretKeyFactorySpi 

 

 

Class javax.crypto.SecretKeyFactorySpi   

 

  

Description 

This class represents the implementation of a SecretKeyFactory. To create such an implementation, 
make a subclass of SecretKeyFactorySpi and define each of its methods. 

Class Definition 
public abstract class javax.crypto.SecretKeyFactorySpi 
  extends java.lang.Object { 
 
  // Constructors 
  public SecretKeyFactorySpi(); 
  // Protected Instance Methods 
  protected abstract SecretKey engineGenerateSecret(KeySpec); 
  protected abstract KeySpec engineGetKeySpec(SecretKey, Class); 
  protected abstract SecretKey engineTranslateKey(SecretKey); 
} 

See Also 

KeySpec, SecretKey, SecretKeyFactory  



Java Cryptography 

 page 237

E.6 Package javax.crypto.interfaces 

 

Interface javax.crypto.interfaces.DHKey   

 

  

Description 

This interface represents a key used in the Diffie-Hellman KeyAgreement implementation. 

Interface Definition 
public abstract interface javax.crypto.interfaces.DHKey { 
 
  // Instance Methods 
  public abstract DHParameterSpec getParams(); 
} 

See Also 

DHPrivateKey, DHPublicKey 

 

 

Interface javax.crypto.interfaces.DHPrivateKey   

 

  

Description 

This interface represents a private key in a Diffie-Hellman key agreement protocol. 

Interface Definition 
public abstract interface javax.crypto.interfaces.DHPrivateKey 
  implements javax.crypto.interfaces.DHKey, java.security.PrivateKey { 
 
  // Instance Methods 
  public abstract BigInteger getX(); 
} 

See Also 

DHKey, DHPublicKey, PrivateKey  
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Interface javax.crypto.interfaces.DHPublicKey   

 

  

Description 

This interface represents a public key in a Diffie-Hellman key agreement protocol. The public key 
value, y, is calculated from the private key value, x. 

Interface Definition 
public abstract interface javax.crypto.interfaces.DHPublicKey 
  implements javax.crypto.interfaces.DHKey, java.security.PublicKey { 
 
  // Instance Methods 
  public abstract BigInteger getY(); 
} 

See Also 

DHKey, DHPrivateKey, PublicKey 

 

 

Interface javax.crypto.interfaces.RSAPrivateKey   

 

  

Description 

RSAPrivateKey represents a private key, suitable for use with an RSA asymmetric cipher. Although 
the JCE does not support RSA, you can buy third-party implementations of RSA that plug in to the 
provider architecture. This interface is the traditional representation of an RSA private key, which 
consists of a modulus and a private exponent. 

Interface Definition 
public abstract interface javax.crypto.interfaces.RSAPrivateKey 
  implements java.security.PrivateKey { 
 
  // Instance Methods 
  public abstract BigInteger getModulus(); 
  public abstract BigInteger getPrivateExponent(); 
} 

See Also 

PrivateKey, RSAPublicKey  
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Interface javax.crypto.interfaces.RSAPrivateKeyCrt   

 

  

Description 

This interface is an alternate representation of an RSA private key. It uses the Chinese Remainder 
Theorem (CRT) to represent the values of the private key. 

Interface Definition 
public abstract interface javax.crypto.interfaces.RSAPrivateKeyCrt 
  implements javax.crypto.interfaces.RSAPrivateKey { 
 
  // Instance Methods 
  public abstract BigInteger getCrtCoefficient(); 
  public abstract BigInteger getPrimeExponentP(); 
  public abstract BigInteger getPrimeExponentQ(); 
  public abstract BigInteger getPrimeP(); 
  public abstract BigInteger getPrimeQ(); 
  public abstract BigInteger getPublicExponent(); 
} 

See Also 

PrivateKey, RSAPrivateKey, RSAPublicKey 

 

 

Interface javax.crypto.interfaces.RSAPublicKey   

 

  

Description 

RSAPublicKey represents a public key, suitable for use with an RSA asymmetric cipher. This interface 
is the traditional representation of an RSA public key, which consists of a modulus and a public 
exponent. 

Interface Definition 
public abstract interface javax.crypto.interfaces.RSAPublicKey 
  implements java.security.PublicKey { 
 
  // Instance Methods 
  public abstract BigInteger getModulus(); 
  public abstract BigInteger getPublicExponent(); 
} 

See Also 

PublicKey, RSAPrivateKey  
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E.7 Package javax.crypto.spec 

 

Class javax.crypto.spec.DESKeySpec   

 

  

Description 

This class represents a key that is used with a DES symmetric cipher. This class is useful for 
converting between byte arrays and DES SecretKeys: 

• To convert from a byte array to a SecretKey, construct a DESKeySpec from the byte array. 
Then use SecretKeyFactory's generateSecret() to create the SecretKey. 

• To convert from a DES SecretKey to a DESKeySpec, give the SecretKey to 
SecretKeyFactory's translateKey(). 

Class Definition 
public class javax.crypto.spec.DESKeySpec 
  extends java.lang.Object 
  implements java.security.spec.KeySpec { 
 
  // Constructors 
  public DESKeySpec(byte[]); 
  public DESKeySpec(byte[], int); 
 
  // Class Methods 
  public static boolean isParityAdjusted(byte[], int); 
  public static boolean isWeak(byte[], int); 
 
  // Instance Methods 
  public byte[] getKey(); 
} 

See Also 

SecretKeyFactory 
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Class javax.crypto.spec.DESedeKeySpec   

 

  

Description 

This class represents a DESede key. It can be used with a SecretKeyFactory to translate between 
DESede SecretKey s and byte arrays. 

Class Definition 
public class javax.crypto.spec.DESedeKeySpec 
  extends java.lang.Object 
  implements java.security.spec.KeySpec { 
 
  // Constructors 
  public DESedeKeySpec(byte[]); 
  public DESedeKeySpec(byte[], int); 
 
  // Class Methods 
  public static boolean isParityAdjusted(byte[], int); 
 
  // Instance Methods 
  public byte[] getKey(); 
} 

See Also 

SecretKeyFactory 

 

 

Class javax.crypto.spec.DHGenParameterSpec   

 

  

Description 

Instances of this class may be passed to the algorithm-specific initialization methods of 
AlgorithmParameterGenerator. 

Class Definition 
public class javax.crypto.spec.DHGenParameterSpec 
  extends java.lang.Object 
  implements java.security.spec.AlgorithmParameterSpec { 
 
  // Constructors 
  public DHGenParameterSpec(int, int); 
 
  // Instance Methods 
  public int getExponentSize(); 
  public int getPrimeSize(); 
} 

See Also 

AlgorithmParameterGenerator, AlgorithmParameterSpec  
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Class javax.crypto.spec.DHParameterSpec   

 

  

Description 

This class encapsulates the public parameters used in the Diffie-Hellman key agreement protocol. 
Typically, an application uses a standard modulus and base to generate Diffie-Hellman keys. This 
class encapsulates the modulus (getP()) and the base (getG()). Instances of this class can be passed 
to the algorithm-specific initialization methods of KeyPairGenerator. 

Class Definition 
public class javax.crypto.spec.DHParameterSpec 
  extends java.lang.Object 
  implements java.security.spec.AlgorithmParameterSpec { 
 
  // Constructors 
  public DHParameterSpec(BigInteger, BigInteger); 
  public DHParameterSpec(BigInteger, BigInteger, int); 
 
  // Instance Methods 
  public BigInteger getG(); 
  public int getL(); 
  public BigInteger getP(); 
} 

See Also 

AlgorithmParameterSpec, KeyPairGenerator 

 

 

Class javax.crypto.spec.DHPrivateKeySpec   

 

  

Description 

This class represents a private key for the Diffie-Hellman key agreement protocol. It can be used with 
a KeyFactory to convert between Diffie-Hellman parameters and PrivateKeys. 

Class Definition 
public class javax.crypto.spec.DHPrivateKeySpec 
  extends java.lang.Object 
  implements java.security.spec.KeySpec { 
 
  // Constructors 
  public DHPrivateKeySpec(BigInteger, BigInteger, BigInteger); 
  public DHPrivateKeySpec(BigInteger, BigInteger, BigInteger, int); 
 
  // Instance Methods 
  public BigInteger getG(); 
  public int getL(); 
  public BigInteger getP(); 
  public BigInteger getX(); 
} 

See Also 

DHParameterSpec, DHPublicKeySpec, KeySpec  
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Class javax.crypto.spec.DHPublicKeySpec   

 

  

Description 

This class represents a public key for the Diffie-Hellman key agreement protocol. It can be used with a 
KeyFactory to convert between Diffie-Hellman parameters and PublicKeys. 

Class Definition 
public class javax.crypto.spec.DHPublicKeySpec 
  extends java.lang.Object 
  implements java.security.spec.KeySpec { 
 
  // Constructors 
  public DHPublicKeySpec(BigInteger, BigInteger, BigInteger); 
  public DHPublicKeySpec(BigInteger, BigInteger, BigInteger, int); 
 
  // Instance Methods 
  public BigInteger getG(); 
  public int getL(); 
  public BigInteger getP(); 
  public BigInteger getY(); 
} 

See Also 

DHParameterSpec, DHPrivateKeySpec, KeySpec  

 

 

Class javax.crypto.spec.IvParameterSpec   

 

  

Description 

This class represents an IV for a cipher that uses a feedback mode. Ciphers in CBC, PCBC, CFB, and 
OFB modes need to be initialized with an IV. This object can be passed to Cipher's algorithm-specific 
initialization methods. 

Class Definition 
public class javax.crypto.spec.IvParameterSpec 
  extends java.lang.Object 
  implements java.security.spec.AlgorithmParameterSpec { 
 
  // Constructors 
  public IvParameterSpec(byte[]); 
  public IvParameterSpec(byte[], int, int); 
 
  // Instance Methods 
  public byte[] getIV(); 
} 

See Also 

AlgorithmParameterSpec, Cipher 
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Class javax.crypto.spec.PBEKeySpec   

 

  

Description 

This class represents a key that is used with passphrase encryption. The JCE includes an 
implementation of this technique whose name is PBEWithMD5AndDES. To create a secret key from a 
passphrase, do something like this: 

KeySpec ks = new PBEKeySpec(passphrase); 
SecretKeyFactory skf =  
SecretKeyFactory.getInstance("PBEWithMD5AndDES"); 
SecretKey key = skf.generateSecret(ks); 

Class Definition 
public class javax.crypto.spec.PBEKeySpec 
  extends java.lang.Object 
  implements java.security.spec.KeySpec { 
 
  // Constructors 
  public PBEKeySpec(String); 
 
  // Instance Methods 
  public final String getPassword(); 
} 

See Also 

PBEParameterSpec, SecretKey, SecretKeyFactory  

 

 

Class javax.crypto.spec.PBEParameterSpec   

 

  

Description 

This class encapsulates the salt and iteration count that are used in passphrase-based encryption. 
Instances of this class should be used to initialize a PBEWithMD5AndDES Cipher. 

Class Definition 
public class javax.crypto.spec.PBEParameterSpec 
  extends java.lang.Object 
  implements java.security.spec.AlgorithmParameterSpec { 
 
  // Constructors 
  public PBEParameterSpec(byte[], int); 
 
  // Instance Methods 
  public int getIterationCount(); 
  public byte[] getSalt(); 
} 

See Also 

AlgorithmParameterSpec, Cipher, PBEKeySpec 
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Class javax.crypto.spec.RSAPrivateKeyCrtSpec   

 

  

Description 

This class represents a private key for the RSA cipher algorithm, specified using the Chinese 
Remainder Theorem (CRT). Instances of this class may be used with an appropriate KeyFactory to 
generate PrivateKey s. Because the JCE does not support RSA, you'll have to buy a third-party 
implementation. 

Class Definition 
public class javax.crypto.spec.RSAPrivateKeyCrtSpec 
  extends javax.crypto.spec.RSAPrivateKeySpec { 
 
  // Constructors 
  public RSAPrivateKeyCrtSpec(BigInteger, BigInteger, BigInteger, 
    BigInteger, BigInteger, BigInteger, BigInteger, BigInteger); 
 
  // Instance Methods 
  public BigInteger getCrtCoefficient(); 
  public BigInteger getPrimeExponentP(); 
  public BigInteger getPrimeExponentQ(); 
  public BigInteger getPrimeP(); 
  public BigInteger getPrimeQ(); 
  public BigInteger getPublicExponent(); 
} 

See Also 

KeyFactory, KeySpec, PrivateKey, RSAPrivateKeySpec  

 

 

Class javax.crypto.spec.RSAPrivateKeySpec   

 

  

Description 

This class represents a private key for the RSA cipher algorithm, specified as a modulus and a private 
exponent. Instances of this class may be used with an appropriate KeyFactory to generate 
PrivateKeys. 

Class Definition 
public class javax.crypto.spec.RSAPrivateKeySpec 
  extends java.lang.Object 
  implements java.security.spec.KeySpec { 
 
  // Constructors 
  public RSAPrivateKeySpec(BigInteger, BigInteger); 
 
  // Instance Methods 
  public BigInteger getModulus(); 
  public BigInteger getPrivateExponent(); 
} 

See Also 

KeyFactory, KeySpec, PrivateKey, RSAPrivateKeyCrtSpec 
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Class javax.crypto.spec.RSAPublicKeySpec   

 

  

Description 

This class represents a public key for the RSA cipher algorithm, specified as a modulus and a public 
exponent. Instances of this class may be used with an appropriate KeyFactory to generate 
PublicKeys. 

Class Definition 
public class javax.crypto.spec.RSAPublicKeySpec 
  extends java.lang.Object 
  implements java.security.spec.KeySpec { 
 
  // Constructors 
  public RSAPublicKeySpec(BigInteger, BigInteger); 
 
  // Instance Methods 
  public BigInteger getModulus(); 
  public BigInteger getPublicExponent(); 
} 

See Also 

KeyFactory, KeySpec, PublicKey  
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Colophon 
Our look is the result of reader comments, our own experimentation, and feedback from distribution 
channels. Distinctive covers complement our distinctive approach to technical topics, breathing 
personality and life into potentially dry subjects. 

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman. The image 
was photographed by Kevin Thomas and manipulated by Michael Snow using Adobe Photoshop 3.0 
and Adobe Gallery Effects filters. The cover layout was produced with Quark XPress 3.3 using the 
Bodoni Black font from URW Software and bt bodoni Bold Italic from Bitstream. The inside layout 
was designed by Nancy Priest and implemented by Mike Sierra in FrameMaker 5.0. The heading font 
is Bodoni BT; the text font is New Baskerville. The screen shots that appear in the book were created 
in Adobe Photoshop 4, and the illustrations were created in Macromedia Freehand 7.0 by Robert 
Romano. 

Whenever possible, our books use RepKover?, a durable and flexible lay-flat binding. If the page count 
exceeds RepKover's limit, perfect binding is used. 
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Article: Why is Java Cryptography so 
Important? 
An Interview with Jonathan Knudsen 

Weapons grade cryptography is now a simple matter using Java. What does it mean for the Web, Sun, 
Microsoft? O'Reilly's Web site editor Allen Noren interviewed Jonathan Knudsen, author of O'Reilly's 
upcoming Java Cryptography for some ideas. 7 

Jonathan is a staff writer for O'Reilly & Associates, a job that allows him to exercise the right and left 
sides of his brain but little of his body. In 1977, when Jonathan was knee-high to a grasshopper, he 
began his computer career by progamming in BASIC on a TRS-80. In 1993 he graduated cum laude 
from Princeton with a degree in mechanical engineering. Jonathan is still unsure what mechanical 
engineers do for a living. His current interests include embedded system MIDI programming, Java 
Sound, and user interface design. He is coauthor of the Java Fundamental Classes Reference and 
writes a column for Sun Server (http://www.zilker.net/business/pci/sun/).  

Noren:  
Why is cryptography important?  

Knudsen:  
Cryptography is important for the same reasons that photo IDs are important and fences are 
important. In the digital world, cryptography offers three essential services that protect you 
and your data from theft and fraud. These services are authentication, integrity, and 
confidentiality.  

There's a saying that "on the Internet, nobody knows you're a dog." One of the things that's 
attractive about the Internet is the anonymity it offers. But if you're trying to conduct 
business, it's a nightmare. Customers need to know that they're ordering goods and services 
from real businesses. Cryptography offers "certificates" as a solution. Certificates are 
sometimes called "digital IDs," because they can be used to verify the identity of someone you 
don't know. This process is called "authentication", where you decide whether someone is 
authentic or not.  

Certificates can be used with another technique, "digital signatures", to ensure that nobody 
can impersonate you. It's very easy to forge email, but it's really hard to forge a digitally signed 
email message. And similarly, it's very hard for somebody else to modify a message that you 
have digitally signed. This is called protecting the integrity of data.  

It's very easy to eavesdrop on email, or any other transaction that takes place on a computer 
network. How can you be sure that nobody finds out about your financial transactions, or your 
medical records, or your secret business deals? Again, cryptography has a solution, something 
called a "cipher". A cipher knows how to encrypt and decrypt data. Before you send sensitive 
data over a network, or store it on a disk, you can encrypt it, which turns it into an unreadable 
mess. When you need the data again, you use the cipher to decrypt the data. If you play your 
cards right, you are the only person that will be able to decrypt the data. If you're sending data 
to someone, you can ensure that only that person is able to decrypt the message. Ciphers 
provide confidentiality because they keep information secret.  

 
Noren:  

How difficult is it to work with cryptography in Java?  
Knudsen:  

It's not difficult at all. Sun did a nice job designing the cryptography APIs. There are classes 
that represent each cryptographic concept, like Cipher and Signature. The API separates the 
concepts from the implementations. This means that, for example, you only need to worry 
about what a cipher does, without worrying about the details of a particular algorithm like 
DES or IDEA. In turn, this means that your applications can work with different algorithms 
without changing any of your code. Maybe you can even let your users choose which 
algorithms to use, based on what they have installed. Part of the Cryptography API is the 
"Provider Architecture," which makes it really easy to plug in different cryptographic 
algorithms.  

http://www.zilker.net/business/pci/sun/
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Noren:  
Cryptography is legally classified by the US government as a weapon. You're not allowed to 
export cryptography software, like PGP, and we're not even putting many of the most 
important examples from your book on our site like we normally do. It's serious business. 
What's the impact of Java cryptography?  

Knudsen:  
In a way, you've answered your own question. The Cryptography API enabled me to write 
weapons-grade software without busting a gut. All Java developers now have the option of 
using the important services of cryptography in their applications. My biggest examples, an 
email client and a network talk application, use cryptography for authentication and 
confidentiality. But if you go look at the source code, most of it is concerned with the rest of 
the application, not the cryptographic part. When the JDK first came out in 1995, one of the 
neat things about it was the Socket and ServerSocket classes, which made it easy to write 
networked applications. Now the Cryptography API has made it easy to develop 
cryptographically enabled applications.  

US export law is only one of the factors that shapes the world of cryptographic software. One 
other factor has to do with patents on algorithms. As I wrote this book, a patent expired on a 
cipher and signature algorithm called ElGamal. One of the really exciting things for me is 
including a full implementation of ElGamal ciphers and signatures in this book.  

 
Noren:  

Where do you see Java developing in the next year?  
Knudsen:  

I think the platform will stabilize. One of the big complaints about Java has been the quirks of 
different JVMs. The Java Activator should go a long way towards standardizing the Java 
environment that is available in browsers.  

 
Noren:  

What are the most important problems that still need to be solved?  
Knudsen:  

Java's biggest problem now is user experience. The Java platform can be as elegant, robust, 
and secure as it wants, but if users don't have a reason to choose applications developed in 
Java, they won't. Right now, Java is very popular with geeks like me. But it's users that pony 
up the bucks and actually buy software. Java's traditional weakness is performance; I'm 
hoping that just-in-time compilers and HotSpot technology, coupled with ever-faster 
processors, will address this problem. On another front, Sun is trying to deliver a framework 
for advanced user interfaces with the Java Foundation Classes. The user experience is being 
enhanced from two sides.  

 
Noren:  

How successful do you think Microsoft will be in positioning itself against Java?  
Knudsen:  

Microsoft has an uncanny ability to either kill, subvert, or absorb competing technologies. 
They're definitely attempting to embrace, extend, and, ultimately, exterminate Java. Again, 
their success depends on users. Developers are savvy to Microsoft's wiles, but if Microsoft is 
able to offer users a significantly better experience with MS-Java applications than with real 
Java applications, then that's where the money will go, and developers will have to follow.  

 
Noren:  

You're an O'Reilly staff author. Mike Loukides, our Java series editor, found you through a 
newsgroup. How was it to write this book and what will you be working on next?  

Knudsen:  
Actually, I found O'Reilly through a feature called DreamJobs in HotWired magazine. I really 
enjoyed writing Java Cryptography, which is my first solo book. It's funny because when I 
started, I didn't think cryptography was interesting at all. Once I started to learn about it, I 
discovered a fascinating and volatile world. A lot of people make fun of the feds for being so 
paranoid about cryptography. But they have a point--it is scary stuff, in some ways. If you and 
I can use cryptography to prevent anyone from reading our email or finding out our credit 
cards numbers when we buy something, then surely thieves and terrorists can use 
cryptography to keep their plans a secret. Like any other powerful tool, cryptography is 
available to the good guys and the bad guys.  
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